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Table 3—cont.
(b) The valence band

A B C L M N
Our values —13-0 -89 10-3 -31 "_'4' ~~~~~ 32-3
(%2/2m) )
Experimental —13-040-2 4-8:94-0-1 10-340-2 — — —
(h2[2m)
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N2 ON THE CONNECTION BETWEEN BONDS AND BANDS

IN METALS AND SEMICONDUCTORS

Ph. CHOQUARD, A. JANNER and E. ASCHER

Batelle Memorial Institute, Geneva, Switzerland

THESE last years, various investigators in semi-
conductor and metal physics have expressed the
need for a chemical approach to solid state pro-
blems. This means an approach using the localized
electron picture and the valence bond scheme.
They take as an example PAULING’s “resonating
valence bond theory of metals”. The interest of
this theory seems to justify a further investigation
into its nature and its connection with the band

theory. We shall illustrate how one might attempa
this by using a theorem of Léwin and formulat-
ing the resonances in terms of configuration inter-
action.

A chemical approach to solid state problems
1m}?hcs, a8 must any correct description of coe
hesive, x'nagnctic or electric properties of solids, an
appropriate treatment of electron-electron cor-
relation due mainly to Coulomb interaction, This
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fact has led SLATER to develop the method of con-
figuration interaction by which he was able to
show the equivalence of valence bond and mole-
cular orbital treatment of the hydrogen molecule,
where three configurations were necessary. Later
L&wnin demonstrated that this equivalence could
be extended to the N clectron problem, showing
that a sufficient condition was realized if one started
from two complete sets of orbitals px and i related
by an infinite unitary matrix:

0
QR == Z Ukge* ‘/’e
s,

For our purpose however, we will discuss and use a
practical version of this theorem in choosing appro-
priate bases of one-clectron wave functions.

TFor the sake of simplicity let us consider from
now on a simple case of the N electron problem,
namely the linear chain consisting of N atoms with
one electron per atom. This model is not only of
academic interest but also of practical interest since
such properties as electrical properties may be
handled one-dimensionally. The representation
suited for molecular orbital treatment is naturally
the Bloch representation whereas the one most
suited for a valence bond treatment will be the
Wannier representation. The Bloch functions
bg(K, x) and Wannier functions ag(x—R) are con-
nected by the known relation:

bo(K,) == N+ > [exp(iKR)]ag(x—R)
R

By this selection, the infinite unitary matrix gets a
simple physical meaning in being reduced to a
direct sum of unitary matrices enumerated along
the diagonal by the quantum number ¢. The matrix
elements are:

N-4[exp(iKR)Bgq

From the structure of the unitary matrices we
notice that a necessary condition for equivalence is
contained in the simple requirement of at least one
orbital per clectron. Generally the same number,
say M of orbitals is required in both representa-
tions in order to treat both schemes to the same
order of approximation, that means taking into
account a specific number of bands. The minimum
of one band corresponds to Mmin = N.

367

.Let us enumerate the number of ways we may
distribute the N electrons over M orbitals taking
into consideration the exclusion principle but for-
getting for a moment the spin variables. First we
have the number of ways of distributing N/2
doubly filled orbitals, then N/2—1 doubly filled
orbitals multiplied by the number of distributions
of two electrons over the rest of M~—(N/2~—1)
orbitals and so on, until the number of distributions
of N singly occupied orbitals. So we have:

= (1\17‘72)+(N/2J_1)x

(el

Whatever the spin configuration one imposes on
the electrons, any determinantal wave function of
the N electrons expressed in one scheme becomes,
via the unitary transformation, a linear combina-
tion of determinantal wave functions in the other
scheme—the number of which is never larger than
A". So a configuration in one scheme is a super-
position of configurations in the other scheme with
definite coefficients given by the unitary trans-
formation.

Next we consider the spin degeneracy. We must
specify further the state of the chain and say for
instance that it is diamagnetic, characterized there-
fore by S; = S2 = 0. Then the total number of
singlets will be given by

€= (zs/lz)p°+"+(}v/f-K)x

) (M——(z;rl/j—x))m A (A;) s

where

1 /2K )
PRE T K1 ( K
is Rumer’s number.

These singlet states, antisymmetric in spin and
symmetric in space variables are linear combina-
tions of configurations with Sz = 0; in order to be
eigenvectors of S2=0, they are produced for
example by the projection operator method of
L&wpIN or by the bond configuration method of
EvriNG. Evring’s bond configurations involve
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each 2872 of the ( J\]/"\/IZ) spin configurations having

S, =0 and are conventionally known under
SLATER-PAULING’s form. LOwDIN's singlets are
orthogonal whereas EYRING's are not, but the latter
have a simple interpretation in terms of bond
diagrams. The relation between both descriptions
has recently been given by LowpiN but only for
small values of N. For our purpose we keep the
bond configuration description since even in the
Bloch scheme they may be constructed by the
simple device of placing on Rumer’s circle the N
values of the wave vector K instead of the IV posi-
tions of the atoms. Equivalence is achieved if one
writes the solution ¢ of the IV electron problem as
linear combinations of all C singlets in both
schemes.

We shall now illustrate how PAULING’s reson-
ances may be formulated.

Synchronized resonance

According to PAULING, this resonance implies a
change of at least two bonds. It requires the same
number of orbitals as electrons: in particular this
will be our chain made of hydrogen-like atoms with
M = N. In principle all the singlet states enumer-
ated above contribute to the resonance but as an
illustration of the prototype of this resonance
which in fact has not been treated by PavLing, we
shall consider only the bond configurations A4y, As
given by the diagrams

) )~ )= () 3)- (32

and the N bond configurations By given by the
diagrams

(1) ( v )(V*{—l* | N1
2/ " v 3 u—{«-Z)n( N )

These bond configurations are not stationary but
if we impose the cyclic condition to the chain, we
may, as in the Bloch scheme, form bases for
irreducible representations of the cyclic group by
the transformations

SN = A As S e Ay e Ag
v y yLmy
B, = Z [axp (N;)] B, p=12.N

Y],
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A v interacts with HFy 0, &7 5 with #An since
they belong to the same representation I° v, Ia,
In this example the ground state is given by the
following ansatz

by = calAyt Ap)+ e By 4 By+ ... By

from which we get two solutions. The same s true
for iy whereas the others o, B, are une
affected. Since the ¢ belong to different representa-
tions, they are stationary states, Having found the
N+42 values E, of the energy spectrum, we may
easily deduce the behaviour in time of the original
bond configurations A and B, imposing a definite
configuration at an initial time £ = 0, and formulate
in this way the resonance theory of synchronized
type. This procedure may be generalized to in.
clude all the sets of N Rumer's bond configurations
and in principle also the ionic configurations, but
for those it might be advisable to take into account
their participation by introducing new  orbitals
which are linear, but not orthogonal combinations
of the basic Wannier functions and calculating the
mixing parameters by minimization of the energy,

Pivoting resenance

This resonance occurs for example when there
are reasons to attribute two orbitals on at least one
or & certain number # of foreign atoms, such as
lithium atoms, placed on the chain so that no two
such atoms are nearest neighbours, If sume super-
lattice is obtained by this arrangement, we may
apply the same procedure as described before with
M = N4n. Here nis the number of PAULING's
metallic orbitals,

Uninhibited resomance

This is obtained in the case of a chain of lithium-
like atomas in which one has two orbitals per atom,
that means M = 2N. In treating this resonance,
Paviing has however reduced the N electron
problem 10 a one-clectron approximation. He
assurnes that the resonance encrgy depends on
hybridizaion as binding energy depends on
hybridization in # diatomic molecule,

One may recall the connection between reson-
ance-type and conductivity character: uninhibited
resonance is responsible for the metallic character
of solids, wheress pivoting and synchronized
resonances are characteristic of semiconductors, as
Moossr and Prarson have shown,

In conclusion we may say that PavLing’s scheme




N.3

SESSION

is equivalent to the molecular orbital scheme. If the
calculations are pursued far enough both theories
will give the same result since solid state properties
are invariant with respect to unitary transformation
applied to one of their description. However,
further work must be carried out on simple models
in order to obtain these results.
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ENERGY BANDS OF SILICON AND GERMANIUM*

J. C. PHILLIPS

Diepartment of Physics, University of California, Berkeley 4, California

I8 recent years there has been a great increase in
both theoretical and experimental knowledge of the
electronic energy bands of 8i and Ge, The follow-
ing information can be deduced from various ex-
periments (energy values are measured relative to
the top of the valence band):

(1) The direct energy gap at the center of the
Zone, as determined optically by Dasit and New-
Mant) (0-18 and 0-06 Ryd., for 8i and Ge, re-
spectively);

{2) The indirect energy gaps to the conduction-
band minima along the (100} and (111} directions
in 8i and Ge, respectively;

(3) The obverse values, as determined from
extrapolating optical measurements®® on Ge-8i
alloys; together with  the results of (2) this
yieldst®  E(X;®) = 009 and 008 Ryd., and
E(I40) == (-22 and 0-045 Ryd., respectively, for
81 and Ge; and

{#) The location of the minimum in the (100)
direction in the lowest conduction band in 5i at
hy == ((1-8640-06)2wa"), as determined from the
hyperfine structure of donor spin resonance, ®

In addition the curvatures (effective masses) of
the top of the valence and bottom of the conduc-
tion bands are known from cyclotron resonance ex-
periments, %9 These curvatures can be used to

*The caloulations presented in this psper wers
carried out st Bell Telephone Laboratories, Murray Hill,
New Jersey.
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estimate certain term values, as will be discussed
presently,

On the theoretical side the calculations of Her-
mAN® for Ge and Wooprurr® and Bassani (40 for
81 have shown that an orthogonalized plane wave
calculation can yield results that are in good
qualitative agreement with experiment. Indeed,
Herman® has recently emphasized that the
qualitative features of the energy bands of semi-
conductors can be understood in terms of a nearly
free electron picture.

Since the plane wave formalism gives a good
qualitative account of the variation of energy with
wave-vector, the author constructed an interpola-
tion scheme based on the plane-wave formalism
which replaced the orthogonalization terms by a
repulsive pseudopotential.® The basic assump-
tion here is that the core has relatively little effect
on the variation of energy with wave vector for
bands near the energy gap. This assumption can be
justified by noting that the orthogonalization terms
related 1o the core are chiefly represented by high
Fourier components, and the latter are not im-
portant in determining effective masses, although
they may affect the overall convergence of the
levels, If the energy gaps at a few points of the
Zone are fitted correctly by a suitable choice of the
parameters the latter difficulty is climinated. In
this way 3-parameter pseudopotentials were con-
structed for Ge and Si that agreed very well with



