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It is shown how to determine (without differential calculus) the possible symmetries in a ferroelectric
transition, the number and the types of domains, and the preferential directions.

The purpose of this letter is to indicate a
simple method of determining the symmetries
in continuous phase transitions. To illustrate the
method, ferroelectric transitions will be consid-
ered, but the method does work, with obvious
changes, also in other cases. The method will be
discussed in_greater detail and other examples
will be considered elsewhere.*.

It is known that in a continuous transition, the
symmetry group of the crystal on one side of the
transition is a subgroup of that on the other side.
However, all possible subgroups do not appear.
Examination of experimental results has con-
firmed the idea that only some particular max-
imal subgroups play a role. Thus, a simple me-
thod of determining the possible symmetries,
preferential directions, and domain configura-
tions can be devised.

In the present case, the method is based on
the following simple rule: The symmetry group
of a phase that arises in a ferroelectric transition
is a maximal polar subgroup of the group of the
high-temperature phase. By polar subgroup, I
mean a subgroup that permits the existence of an
invariant polarization vector. A maximal polar
subgroup is a polar subgroup that is not con-
tained in any other polar subgroup. The condition
of maximality is plausible for energetic reasons:
it ensures the.formation of a minimum number of
domain walls. So far I have not been able to find
any exception to this proposition [2].

* The method has been used by the author for two years
already. The first four paragraphs and the two fig-
ures are extracteifrom a talk given at Philips Re-
gearch Laboratori
The appearance of a recent paper [1] indicates that
the publication of the present method may be of gen-
eral interest,
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s, Eindhoven, on October 19, 1964.

a) As first example, let us take BaTiOg. The
high-temperature space group is Oﬁ. Let us look
at the subgroups (see fig. 1) [3]. The maximal
polar subgroups are Civ, Csy, and Cgv . These
are exactly the symmetries of the three ferro-
electric phases of BaTiOg.

If we know the maximal polar subgroups, we
also know the possible directions of polarization.
For this, it suffices to consider the point groups.
It is necessary, however, to take into account how
many times a given point group occurs as sub-
group of a given group [4]. This point has been
neglected in the example of BaTiO4 (see fig. 2).
This scheme is not complete; only the relevant
point groups are shown. O, has 4 subgroups C3V,
which are not shown in the figure, 3 subgroups
C4y» and 12 subgroups Coy- Of these latter 12,
only 6 are maximal polar subgroups. To each
maximal polar subgroup, there corresponds a
definite direction of polarization. To the 4 groups
Cgy correspond the 4 [111]-directions, to the
3 groups Cy,, correspond the 3 [100]-directions,
to the 6 maximal polar subgroups C v correspond
the 6 [110]-directions. The other 6 groups Cy
that are not maximal polar would give rise to po-
larization in the 3 [100]-directions with two types
of domain for each direction. These latter groups
are eliminated by our condition, and indeed they
do not occur in the orthorhombic phase of BaTiO,,.

Let us briefly discuss some other examples:
b) PbZrOg. As seen from fig. 1, the low-tempe-
rature space group Cs, is not a subgroup of the
high-temperature space group Oy, so that the
transition cannot be of second order,
c¢) Rochelle salt: C% (low temperature) is a max-
ximal polar subgroup of D% (high-temperature);
there is another such sub roup, C;. Potassium
dihydrogen phosphate: C%v (low-temperature) is
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Fig. 1. Maximal polar subgroups of Olll(BaTiO3).

On

S \\

rrerrr QOO0

=[on] b=[oi] c=[o] d=[i0] e=[0] f= [iT0]

Fig. 2. Domain structure in the tetragonal and orthorhombic phases of BaTiO,.
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the only maximal polar subgroup of D2h (high-
temperature). ShSI: C2V (low-temperature) is a
maximal polar subgroup of Dy, (high-tempera-
ture). The other maximal polar subgroup is Csy .
Thiourea, SC(NH2)2, has a ferroelectric transi-
tion D%ﬁ - CZV 4

d) NHHoPO4: Dy (low-temperature) is not a
subgroup of Dz (high-temperature), therefore
the antiferroelectric transition cannot be of sec-
ond order.

e) NH4HSO4: CS (lovg temperature) is a max1ma1
polar subgroup of C3y, (high-temperature); C}
(stable below -119°C) is not. The other maximal
polar subgroup of Cgh is C3. The ferroelectric
transition Cyp, — Cg occurs also m di- glycme
nitrate, and rubidium bisulfate; C2h - Cz takes
place in colemanite,

f) MASD, NH30H3A1(SO4) .12H O as strange
as it may appear, C5 (low- temperature) is a max-
imal polar subgroup of T4 (high temperature)
(Cg is the other one). The other possmle space
group assignment for MASD could be T (the
space goup of the cubic alumns); however Cz is
not maximal polar in Tﬁ, therefore, the transmon
Tg - C% could not be ferroelectric.

Concerning the most general expansion of the
free energy in terms of polarization - and /or
magnetization, stress, etc. - it is clear that an
expansion having the symmetry of the paraelec-
tric state can be found by making use of the point
group of the paraelectric state; it is not necessary
to consider the space group; for antiferroelec-
tricity and antiferromagnetism, a knowledge of
the space group is necessary. The same expansion
is also valid for the sum over all possible domain
orientations in the ferroelectric state, but it is

certainly not valid for a ferroelectric, monodo-
main single crystal. The terms of the expansion,
and generally all tensors characterizing a crys-
tal, may be found, without any group theoretical
operation, by simple inspection, once the way in
which the components of the three types of vector
(electrical polarization, magnetization, and cur-
rent density) transform [5]. Thus, is is very easy
to settle the question of invariants of third order
[6] once and for all. (As is known, there should be
no such invariants in second order transitions.)
It is worthwhile pointing out that, at any rate for
the examples given in this letter, the possible
ferroelectric phases for a given paraelectric
phase, instead of being found by the old method
of minimizing the free energy [7], may be deter-
mined without differential calculus. The applica-
tion of these considerations to magnetic aniso-
tropy.and magnetic domains will be treated else-
where.
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