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Synopsis

Repetition of motifs in space and time gives rise to regular patterns with symme-
tries described by relativistic crystallographic groups. This leads to natural gener-
alizations of concepts familiar in Euclidean crystallography. Here only the two-
dimensional relativistic case is considered. Conditions are derived for a Lorentz
transformation to be crystallographic, s.e. to leave invariant a lattice in the two-
dimensional Minkowskian space. The introduction of crystallographic transformations
that change the sign of the indefinite metric tensor appears to be a necessary step in
relativistic crystallography. The corresponding concepts of the theory of binary
quadratic forms and of real quadratic fields are briefly discussed.

A classification of all possible relativistic two-dimensional lattices is given and the
corresponding Bravais classes are derived (at least in principle, as there are an infinite
number of them). Isotropic lattices (i.e. with lattice points on the light cone) and
incommensurable lattices (i.e. with incommensurable metric tensor) haveas holohedry a
point group of finite order. The other ones, which are described essentially by metric
tensors g(B) = (a, b, ¢) with relatively prime rational integers a, b, ¢ and discriminant
d = b2 — 4ac¢ not a square, always have a holohedry of infinite order. A number of
lattice representatives of Bravais classes ordered according to the kinematical in-
terpretation of the Lorentz transformation is given in the appendix.

1. Introduction. Periodic repetition of an arbitrary (finite) motif in space
gives rise to patterns having crystallographic space groups as symmetry
groups!: 2). Homogeneity of empty space, or in other words, covariancy
of physical laws with respect to the Euclidean translation group, is a neces-
sary condition for the existence of crystals. This property, which makes
possible the existence of the same motif of matter (e.g. molecule) at
different places, is of course not sufficient {for ensuring the existence of
crystals, but makes this existence not at all surprising.
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34 A. JANNER AND E. ASCHER

Actually physical laws are covariant with respect to the inhomogeneous
~ Lorentzgroup, which includes the Euclidean translations asa subgroup. In the
same way as above, this fundamental property makes very plausible the
existence In nature of periodic repetition of some (finite) motif in space and
time. We call such four-dimensional patterns space-time crystals, which then
have the symmetry of relativistic space-time groupss3).

Periodic motions on the one hand, and static (three-dimensional) crystals
on the other, are degenerate cases of space-time crystals, as they give rise
to infinite space-time unit cells. To get a finite unit cell, one may consider
the combination of the two previous examples in the form of some crystal
vibrating in a given mode, which then has the symmetry of a space-time
group. From a general point of view, however, this example may represent
too simple a case. - ,

Further analysis of the problem of finding out the possible physical
manifestations of space-time crystals shows that one has tolook into kinematic
symmetries in distributions of matter (like e.g. those of conduction electrons
in metals). It is then clear that if the typical velocities occurring in such
distributions with respect to the centre of mass are small compared to the
velocity of light, one has to consider the non-relativistic limit, 7.e. what we
‘call Galilean space-time groups. These groups have very peculiar features,
and will form the subject of a subsequent paper. |

Our lack of a synthetic intuition of physical phenomena in space and time
together, and the incredible richness of relativistic crystallography (as
:compared with the Euclidean one) make it advisable not to start thinking
about possible space-time crystals before having some basic knowledge of
space-time groups3:4). In our opinion this is also true if one is interested in
another fundamental question, namely that of the existence of a fundamental
length in nature. If such a length does exist and space-time is homogeneous
no more, then one expects that some type of crystallographic description of
matter in space-time is not only possible but even necessary. This is in fact
what can be observed already in the current literature where a lattice is
‘associated to the fundamental length 5-9). However, we should like to under-
line the fact that matter can very well be arranged: according to the sym-
metry of space-time groups even if there is no fundamental length.

We begin now to have a first view of relativistic crystallography and this
paper is the first one devoted to the two-dimensional case (one time-
dimension, one space-dimension). In two dimensions everthing can be done
explicitly. This is no more the case in higher dimensions, in which (for the
-moment) only some families of groups can be derived.

The interesting point is that even in two dimensions and because of the
richness of the indefinite metric case, it is much more easy to grasp general
laws than in the positive definite case. More than that, a two-dimensional
crystallography appears which may be formulated completely in terms of
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arithmetic functions independently of the character of the metric, We
consider this as a main result. Even the case where the determinant of the
metric tensor vanishes, which arises in the limiting case of Galilean space-
time, is correctly described in such an approach. In this paper, however,
we consider only the relativistic case. The comparison between the relativistic
and the Euclidean case will be made elsewhere.

Elsewhere also we hope to be able to discuss the interesting relations
between relativistic crystallographic groups and Lie groups. In the Euclidean
case such relations play an important réle in the classification of complex
semi-simple Lie algebras and in the representation theory of linear Lie
groups10-14),

2. Relativistic lattices and crystatlographic Loventz transformations. Given
the two-dimensional Minkowskian vector space V' with metric tensor

£(®) =, )

(we put for the velocity of light: ¢ = 1), and orthonormal basis B — (e1, e2).
We consider a basis B’ = (e1, e2) = BS defined by

e] = s1161 -+ Sa1e9

, with  S= (3“ 312) eGL(2,R) (2.1)
€2 = S12€1 + S2262

S21  So2
and the lattice generated by B’
A(B') = {z1e} + 226521, 20 € Z}.

The lattice A(B’) is a set of vectors in V. If T is a unimodular transformation,
T eGL(2, Z), then A(B'T) = A(B'). We shall write simply A when it is not
necessary to specify the basis.

GL(2, R) and GL(2, Z) are the groups of real and integer non-singular
two-by-two matrices, respectively. The metric tensor corresponding to the
basis B’ is given by

g(B') = S'¢(B) S. (2.2)
One finds:
b
siy — s $11512 — S31S829 “ 5
¢(B) =< = S 11s1s )D;«zf Dot (4, 3,0
S11S12 — S21822  Syp — Sp b ;
- 2 (2.3)
and of course det g(B’) < 0, which means that
d 2002 — 4ac > 0. (2.4)

The quantity 4 is called the discriminant of (a, b, c).
Those Lorentz transformation are crystallographic that are unimodular -
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with respect to a certain basis B’, i.e.:

L' = S-1LS, with Le0(1, 1), L'eGL(2 2) (2.5)
for some S € GL(2, R). Since by definition: Ltg(B) L = g(B) it follows that
L'g(B) L' = g(B). (2.6)

The unimodular character of L’ ensures the invariance of the lattice A
generated by B’ under this Lorentz transformation, so that we may write:

L'A = . (2.7)

Any set of transformations {L{, L3, ..., L,} satisfying the above three re-
lations generates a relativistic point group K which is a subgroup of GL(2, Z)
and leaves A invariant. The largest point group H leaving a given lattice
invariant is called its holohedry.

Two metric tensors g(Bi) and g(B;) are arithmetically equivalent
g(B1) ~ g(B2) and belong to the same arithmetic class if

g(B1) = Stg(Bg) S for some  SeGL(2, 2), (2.8)
whereas the arithmetic equivalence of point groups is given by
Ki LK, if S-1K,S = Ky  for some SeGL(2, Z). (2.9)

. Relation (2.9) means that K; and K are two conjugate subgroups of
GL(2, Z).

To a given lattice there corresponds the whole set {B’S|S e GL(2, Z)} of
its possible bases, and thus an arithmetic class {g(B")} of metric tensors and
also an arithmetic class {K} of point groups. The concept of Bravais classes
arises from the fact that whereas a lattice A determines the arithmetic class
of its holohedry {H}, an arithmetic class determines a Bravais class of
lattices1%). Two lattices belong to the same Bravais class if they have
arithmetically equivalent holohedries:

ME Ay i H A H, (2.10)

As the dimension of the space is even, it is possible to consider lattices with
orientation, and oriented Bravais classes. In this case conjugation occurs
with respect to an element of SL (2, Z), the subgroup of proper elements of
GL(2, Z)%%). In this paper we shall consider oriented lattices. If the holo-
hedry of such a lattice is a subgroup of SL(2, Z), then its arithmetic class
splits into two proper arithmetic classes and two enantiomorphic lattices A
and A’ belong to the same (non-oriented) Bravais class, where A’ arises from
A by changing orientation. If the holohedry of A is not a subgroup of SL 2, Z)
then A4 = A’ and the lattice is called ambiguous. Further on we shall discuss
this in greater detail and in a more general frame.

The holohedry H of a lattice is determined by the metric tensor of any
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lattice basis B’, because the relation
L'%e(B") L' = g(B') with L' eGL(2, Z) (2.11)

is a necessary and sufficient condition for L’ to belong to H. But a metric
tensor does not determine a single lattice, because it simply fixes the length
and the relative position of the two basis vectors.

Thus bases By and By (and therefore lattices A; and As) obtained one
from the other by a Lorentz transformation: By = BiL,

§(Bs) = Lig(B1) L =g(By)  with LeGL(2 2) (2.12)

determine the same metric tensor.

One says that B; and Bs, and the respective lattices A; and Ay, are re-
lativistic-geometrically equivalent (B 28 Bg; A; k& As). Two lattices then
belong to the same relativistic geometric class if they differ simply in the
frame of reference. From (2.11) and (2.12) one arrives at the conclusion that
relativistic-geometrically equivalent lattices belong to the same Bravais
class.

Consider now any lattice. It contains a space-like vector which can be
taken as first basis vector ef. Then |lef||2 = @ > 0. In other words a lattice
determines an arithmetic class of metric tensors: in this class there is always
a metric tensor g(B') = (a, b, ¢) with @ > 0. This means thatzif a is negative,
one has to go over to an arithmetically equivalent metric tensor in order to
meet the requirement.

By taking another representative of the Bravais class of the lattice
considered above, it is always possible to have the first basis vector e1 in
the space direction e;. This fixes the basis B’ (and the lattice 4) according to:

e1 = Jaey;
, b a (2.13)
SN AR VPR

By this procedure, to each lattice 4 a metric tensor (a, b, ¢) with a > 0 is
associated. Henceforth (if nothing else is explicitly stated) we shall always
adhere to the choice (2.13).

The condition (2.5) for L’ to be a proper Lorentz transformation leaving
A invariant becomes:

Ln — b —
&us=5:<m” %) T eeLe 2) (2.14)
au $(n -+ bu)
where
b

cosh y  sinh y Ve 2./a
L=+]|. : S = ,

sinh y  cosh g Ja
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with n = 42 cosh y and » = £ \/{(n% — 4)/d} with sign u = sign x. This
means that # and » are solutions of the equation

7n? — du? = 4 (2.15)

expressing the condition det L' = +1. One easily verifies that in fact I/

of (2.14) leaves invariant g(B’) = (a, b, ¢). Let us remark that the only

transformations L' of finite order are those associated with the trivial soly-

tions # = 0 and n = 4-2, .. the identity E and the total inversion —E.
Improper Lorentz transformations are of the form

M cosh y sinh y
== —sinh ¥ —cosh 5/’

therefore traceless. Referred to the lattice basis B’ of (2.13), they become:

b
. 1 b — e b
S-S = M7 = | 2+ o) ok g ot b (2.16)
—au —3(n + bu)
Note that M" is always of order two and can be written as:
, . | 1 ,
M’ = MyL’, My = (2.17)

0

with L’ as in (2.14). Therefore if 4 divides b and L' leaves A invariant, then
so does M’, and /4 is ambiguous. |

A metric tensor g(B’) = (4, b, ¢) is called integral when , b, ¢ are rational
integers. If furthermore a, &, ¢ are relatively prime, then g(B’) is called
primitive. The lattices corresponding by (2.13) to these tensors also are
called integral or primitive lattices. We now formulate a property that is of
fundamental importance in relativistic crystallography.

Proposition 1. Each Bravais class of lattices that have holohedries
of infinite order contains a primitive lattice; at most two primitive lattices
are contained in such a class.

Proof. We first show that there is a primitive lattice. According to the
hypothesis, there is in the Bravais class a lattice A, with g(B') = (a, b, ¢
with some a, b, ¢ € R, left invariant by a L', as in (2.14), with » = 0. We
may suppose « > 0; otherwise we consider L'-1 instead of L’. Note that
lattices differing only by a positive scaling factor are invariant with respect
to the same point groups and belong to the same Bravais class. Therefore
g(uB') = (au, bu, cu) defines by (2.13) an integral lattice #A that is in the
same Bravais class as 4. Consider the greatest positive divisor & of au, bu
and cu. Then u/[k is primitive and is in that same Bravais class, For
g(uB'[k) we write again (a, b) ¢) but now a, b, ¢ € Z are relatively prime.
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We now show that there are at most two primitive lattices in a same
Bravais class. Let

Y C I ,
L' = (y 6>55L(?, Z)

be a proper Lorentz tranéformation of infinite order leaving invariant a
primitive lattice with g(B) = (a, b, ¢). Then by (2.14) one has

Yy = au, 0 — a = du, —p = cu and at+d=mn (2.18)
implying
|u| = ged(y, 6 — o, —B) e Z (w 5 0), (2.19)

i.e. u is the greatest common divisor of y, § — « and —pB. In order to have
a > 0, one has to take:

sign u = sign y. | (2.20)

By (2.18), (2.19) and (2.20), together with (2.13), a primitive lattice with
metric tensor g(B) = (a, b, ¢) is uniquely determined.

L’ leaves invariant also —g(B) = (—a, —b, —c) which defines an inverse
lattice 4 of A (see section 4) and possibly A = .

Corollary 1.1. Every element L'eSL(2, Z) with [t L'l>21is a
crystallographic Lorentz transformation referred to the basis (2.13) of a
primitive lattice.

Corollary 1.2. The general form of a proper crystallographic Lorentz
transformation is:

, 3(n — bu) —Cu 3 ;
L' = ( ” L+ bu)) » (2.21a)

for any a, b, ¢ € Z such that ged(a, b,¢) = 1 and @ > 0, and for (n, %) any
integral solution of the Pell (plus) equation:

n? — du? = 4, where d = b% — 4ac > 0. (2.21b)

In this way we arrive at the theory of indefinite binary quadratic forms
and of real quadratic fields, which of course are nothing else than other
aspects of the same thing. The formulation of this matter in crystallographic
terms is precisely the aim of this paper. From the theory of binary forms
and ‘quadratic fields we therefore mention only a minimum number of
essential points.

Consider the indefinite quadratic form:

Vx,yveZ
Cf(®y) = ax® + bay + y2 2[4, b, ], wY

2.22
a,b,ceR ( )
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with discriminant

d=0% — 4qc > 0.

One says that the real numbers (%, 9) are represented by the quadratic
form [a, b, ¢]. Clearly, one may make a lattice 4 in the hyperbolic plane
associated with the metric tensor g§(B’) = (a, b, ¢) correspond to the set of
numbers represented by [a, &, ¢]. The number f(x, y) then expresses the
distance between the origin and a lattice point P with coordinates x and y
with respect to the basis B’ of (2.13). We may say that the lattice A is re-
presented by the quadratic form [a, 5, ¢]. One has the following properties.

Proposition 2.
a) Two arithmetically equivalent quadratic forms (i.e. conjugated in
GL(2, Z)) represent the same set of numbers,
b) To quadratic forms that are conjugated in SL(2, Z) there corresponds
one single (oriented) lattice. _
c¢) To quadratic forms that are conjugated by an Improper element of
GL(2, Z) there correspond two lattices, one of which is the mirror image
of the other (with respect to the first basisvector). The two enantio-
morphic lattices may coincide (ambiguous case).
Proof. See Bachmanni6), pp. 100-117. Conjugate of quadratic forms
occurs as for metric tensors after identification of [a, b, ¢] with (a, 0, ¢).

Suppose now

b b
a — a —
2 2
a a=(, , (2.23)
2 " 2 ¢

then any 4 e GL(2, R) satisfying (2.23) defines an automorphism of the
quadratic form (a, 5, ¢),andany 4 € GL(2, Z) satisfying (2.23) an automorph
of the same form17), Comparison with (2. 12) and (2.11) shows that Lorentz
transformations are automorphisms, and the crystallographic ones auto-
morphs of the quadratic form defined by the metric of the basis vectors (and
vice versa). Actually, in order to obtain the relativistic Bravais classes one
needs a generalization of these concepts, as is done in section 3. But before
doing this, we add a few remarks on real quadratic fields18. 19),

Consider the real quadratic field Q(V/D) generated by JD over the
rationals Q, where D is a positive rational integer (D > 0). We assume D

is not a square, but it may have square divisors. The square-free part is noted
by Dy. One has:

QWD) = Q(y/Do)  where D= °Dy, geZ.  (2.24)
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Any element A € Q(,/D) can be written as
21 -+ Zg\/D

%3

A= V.Zl, 49, 23 € Z. (2.25)

The uniquely defined element:

— 23D
PO S (2.26)
<3

is called the conjugate of A.
A norm N and a trace S are defined by

N@) 222 and  S(A) 244w (2.27)
with properties

N@) =N@#); N(uhs) = N(2) N(h2); N(A) =0<4i=0

S+ 22) = S(h) + S(As);  S(kA) = RS(2) for keqQ.
Quadratic integers v are defined as those elements of Q(y/D) which have

rational integral norm and trace. One shows 18) that they form a ring and
are of the form :

21 -+ Zg\/d

VY = "——2—-—, 21,29 €7 (2.29)

(2.28)

where d is the discriminant of Q(,/D) given by

g— 4D if D =2or3(mod4);
"D i D=1 (mod4).

The quadratic field Q(,/D) will also be denoted by Q(./d). The quadratic
integers of Q(/D) thathavean integer inverse are called units of the quadratic
field. They have norm 41 and form a group under multiplication, called
the group of units. Accordingly units are given by

n -+ u/d

o= (2.31a)

(2.30)

where #, u € Z are solution of the (plus, minus) Pell equation:
n? — du? = 4-4. (2.31Db)

It is now possible to indicate the relation between quadratic fields and two-
dimensional relativistic crystallography.

Relativistic Bravais lattices having holohedries of infinite order can be
brought in correspondence with Z-modules # of quadraticintegers. Consider
the Bravais lattice A defined by the basis B’ of (2.13) with primitive metric
tensor g(B') = (a,b,¢), a >0 and discriminant 4 = #2 — 44¢ > 0. The
correspondence is then indicated in the following table (2.32).
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TABLE (2.32)

Correspondence between relativistic Bravais lattices and Z-modules in real quad-
ratic fields

Minkowskian Real quadratic Dis-
vector space V field Q(./D) criminant -
basis e1, /D ez 1, w 2et /D d = 4D
lattice or module  2,/a A M= [2a,b + o] d = 4g2D,
basis er, 3(ger + /Des) 1,0 B 3(g + /D) d=D
Y P
lattice or module . /a A M = [‘.‘a’, : 2 g J- ‘w:l . = ¢2D)

In the case 4 = D one has @ = b (mod 2) = ¢ (mod 2). The correspon-
dence is such that if 2 & Q(,/D) corresponds to I € ¥/, then

N(A) = s S() = 2l-e1. AU - (2.33)

Note that 2\/ a A, as well as \/ a A are lattices in the same Bravais cLass.
as /. 7 : -
Comparison of (2.31) with (2.21) shows that for a given primitive lattice
(@, b, ¢), crystallographic proper Lorentz transformations

I z(%(n — bu)  —cu )

an 3(n + bu)

are in one-to-one correspondence with the positive units (N(s) = 1) of
Q(+/D) given by: :
&= }(n — u./d). _
In this way we see that proper crystallographic Lorentz transformations
and relativistic Bravais lattices (in the primitive case) appear as elements

of one and the same quadratic field. The interpretation of negative units
(V(e) = —1) will be indicated in the following section.

3. The g-automorphs. We first consider the case of real (a, b, ¢), later on
that of primitive (4, b, ¢), and we identify quadratic forms with corresponding
metric tensors.

Definition. An automorphism X of a real indefinite metric tensor
g(B) = (a, b, ¢) is an element of GL(2, R) such that

© Xtg(B) X = g(B), XeGL(2, R). | (3.1)
Definition. A negautombfphism X of a real indefinite metric tensor
g(B) is an element of GL(2, R) such that: . , :
Xe(B) X =—¢(B), - XeGL2B. (@32
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If no distinction is made between automorphism and negautomorphism we
speak of generalized automorphisms (or simply of g-automorphisms). In

the case of g(B) = (1, 0, —1) we have the following possible general para-
metrization of g-automorphisms for ¢ € R: :

L0 =505 ang)  (orens e, (634
s (s S s o o,
+ A(¢) = + (j:slii (s:?rjllz i) improper negautomorphism; (3.3c)
+ N(¢) = + (_E;I;EZZ __Z?SE Zz) proper negautomorphism. (3.3d)

In what follows we shall use the letters L, M, A, N, for the above g-
automorphisms.

One easily verifies the following relations:

A1) A(de) = A(pe) A(d1) = L(¢1 + o);

L(¢r) L(¢e) = L(ga) L(d1) = L(¢1+ ba);

M(b1) M(de) = (M) M(p1))™ =  L(¢a — $1);

N(¢1) N(de) = (N($s) N($1))™ = —L(¢s — ¢1);

A7) = A(—9), L=H($) = L(—¢);

M=1(¢) = M (), therefore M2(¢) = 1;

N-1(¢) = —N(¢), therefore N2(¢) = —1. (3.4)

The result of conjugation of a g-automorphism X; by another g-auto-
morphism Xs, i.e. the element X;1X ;X5 is indicated in the following table.

TABLE (3.5)
Conjugations of g-automorphisms
conjugated by ‘
/ Lo As Mo Ny
g-automorphism
Ly Ly Ly L Lt
4y 4y 4, —Ayv —4pt
My MiLy —MiA}  MsMiMs —M,
Ny NiLZ —Ni42 —N; —N2N1Ng

We now go over to primitive metric tensors.
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Definition. Anautomorph Y of a primitive metric tensor g(B) = (a, b, ¢)
with @ > 0, is an element of GL(2, Z) such that
Yte(B) Y = g(B), YeGL(2 Z). (3.6)
Definition. A negautomorph Y of a primitive metric tensor g(B) as
above is an element of GL(2, Z) such that:
Yig(B) Y = —g(B), YeGL(2, Z). (3.7)

Elements of GL(2, Z) satisfying (3.6) or (3.7) are called g-automorphs of

e(B). ,
Before discussing the basic properties of automorphs we introduce arith-
metic functions pg(n) defined by the recurrence relation:

brr1(n) = npr(n) — pr-1(n),  Vm keZ (3.8a)
and the initial values:

po(n) =0, p1(n) =1, VnelZ. (3.8Db)
Furthermore we define:

Apx(n) Def pr+1(n) — pr—1(n), Vu, ke Z (3.9)
also obeying the recurrence relation (3.8a) but now with the initial values:

Apo(n) =2  and = Api(n) ==, VnelZ. (3.10)

The detailed properties of these functions will be discussed elsewhere. Let
us here mention only a useful parametrization in term of trigonometric and
hyperbolic functions.

For any # € Z, consider ¢ € R with ¢ > 0 such that

__ {(signn) 2 cosh ¢ if |n] > 2;
%—{ 2cos ¢ it  |nl <2 (3-11)
Then
2 cos kdp = Apy(n); |
for n| < 2{2 Sin kg = /(4 — n%) pu(n) (3.12a)
and
2 cosh k¢ = Apg(n);
for n > 2{2 sinh kg — \/(%2 — 4 plw), (3.12D)

with pr(—n) = (—1)¥+1py(n) and Apy(—n) = (——l)kAybk(n)

Note that Apy(n) and px(n) are solutions of the Pell (plus) equation of dis-
criminant 4 = n2 — 4:

Api(n) — (n% — 4) pi(n) = 4. (3.13)

Proposition 3. A proper automorph L of a primitive g(B) = (a, b, ¢)
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can always be written as:

L=+4Lt=1 (%(nl—bul) o )k:i (%(%k——bulc) —cuy )
) ))

au $(m1-+buy auy L(mp—+buy
(3.14)

where (71, #1) is the least positive solution of the Pell (plus) equation of
discriminant 4 = 2 — 4ac > 0:

n% — du2 = 4
and
N = Aﬁ]g(’nl), U = %1]5/%(7’1/1)- (3.15)

We call L, the fundamental Lorentz transformation (of g(B)).

Proof. For any given primitive g(B) = (@, b, c) there is a one-to-one
correspondence between positive units ¢ of the quadratic field Q({/d), where
@ = b? — 4qgc, and the proper automorphs L of g(B):

7 §n — du)  —cu
— \aw 3(n -+ du

)) <& = §(n + u/d). (3.16)

We now show that L¥ is given by
Ik — (%(nk — b%k) —CUE )

auy %(%}c —+ b%k)
where

nx = Apr(n) and Uy = upg(n).

For £ = 1 the statement is trivially true. Suppose it is true for & — 1, then
for L* one finds the above expression with

N = §(Me—1 7 + ug—1 ud),
U = Y(Up—1 7 + N1 u),
where, according to the induction hypothesis:
n? — du? = 4, Np_q — dui_, = 4, Mp-1 = Apr—1(n) and
Uk—1 = Upg—1(#).
Using the relations:
Pritr,(1) = 3(Pr,(n) Apr,(n) + Apr,(n) p,(n),
Bt (n) = $(Dpi,(n) Dpr,(n) + (02 — 4) p,(n) pr,(n)) =
= §(dpr,(n) Apr,(n) + pr,(n) pr,(n) ud),
which are a simple consequence of (3.12), one finds:
ng = Dpr(n) and ur = upg(n).
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In exactly the same way one proves that
&b = L(ng + ur/d).

It follows that L¥ corresponds to &k,

Any positive unit of Q(\/d) can be written as ¢ = +&¥ where ¢; is the
fundamental (positive) unit obtained from the least positive solution
(u1, n1) of the Pell equation (see e.g. ref. 18), so that any proper auto-
morph of g(B) is given by

L=4Lk

with Ly the fundamental Lorentz transformation (of g(B)).
Note that in our case |n1| > 2 if d is not a square.

Corollary 3.1. The crystallographic Lorentz transformations Ly and
L= +4Lfof (a, b, ¢) are in correspondence uniquely to ¢; = (n1 + ulx/d)
the fundamental (positive) unit of Q(,/d), and to & = &, respectively.

Corollary 3.2. Animproper automorph M of a primitive g(B) = (a,b,¢)
can always be written as

b
M= £ Mylk= + <%(”’“ o) —omie+ - (e b“’“)> (3.17)

where

1 b
M0= 61)
o -1

and ng, ug as above.

Proof. Consider (2.16) and (2.17).

The negautomorphs can be treated in the same way, with an important
restriction, however; we have to consider only those primitive g(B) for which
there are negautomorphs. The explicit conditions therefore are discussed
further on. Let us, for the time being, merely underline the fact that there
are (oriented) lattices that admit proper negautomorphs but no improper
ones. (See section 4.) |

We first introduce new arithmetic functions gx(m) defined by the re-
current relation:

Ir+1(m) = mqx(m) + qp—1(m), Vm, ke Z (3.18a)
and the initial values: |

go(m) = 0, qi(m) = 1, VmeZ. (3.18b)
Furthermore we define

Agr(m) 2 gpiq(m) + gr—1(m), Yk, meZ (3.19)
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also obeying the recurrent relation (3.18a) but with the initial values:
Ago(m) = 2 and Ag1(m) = m, VmeZ. (3.20)

Note that gg(1) are the numbers of Fibonacci and Agy(1) those of Lucas.
These arithmetic functions too can be parametrized in terms of hyperbolic
functions.

- Consider for any m e Z a qS € R such that
2 sinh ¢ = m. (3.21)
Then for any ke Z:
2 sinh 2k$ = \/(m2 + 4) gar(m),
2 cosh 2k¢ = Agag(m)
and (3.22)
{2 sinh (2k + 1) (/) = Ag2k+1(m),
2cosh (2k + 1) ¢ = /(m? + 4) qap41(m)
where Agg(m) and gx(m) are solutions of the Pell equation (plus, minus) of
discriminant d = m?2 + 4: 1
Agy(m) — (m? 4 4) gi(m) = (— 1)k 4. (3.23)
Proposition 4. Suppose g(B') = (a,5,¢), a >0, a primitive metric

tensor admitting as in (3.7) an improper negautomorph A. Then A can
always be written as:

$(m1—bvy) —cvy )’“__ i(%(mk*b”k) —CUg )
)} ~ \avg L(my+boy)
(3.24)

with £ = 1 (mod 2) and (m, v1) the least positive solution of the Pell (minus)
equation of discriminant 4 = 52 — 4ac > O:

A:iA":i(

\av1 $(m1+bv,

m2 — du? = —4, (3.25a)
fufthermore
'mk = Aqk(ml), Vg = vlgk(ml). (3.25b)

Proof. One may regard an improper negautomorph A of g(B’) as an
improper negautomorphism of (1, 0, —1), which becomes unimodular when
referred to the basis B’ of (2.13). Therefore, using (3.3c) one gets:

1 b J b\
e a
A— 4 Ja Jad | /sinh y cosh y 2a \
- 0 2\/a |\cosh y sinh y4 Ja

Ja 0 2\/a

-+ (i’f}m — ) _2:(;: N bv)) (3.26)
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where m = 2 sinh yeZ, and v = \/{(m? + 4)[d}e Z. (m, v) are integral
solutions of the Pell (minus) equation:

me — qu? = —4,

Therefore & = 4-§(m + v,/d) is a negative unit of Q(,/d) and is uniquely
determined by 4. Let A be the improper negautomorph that corresponds
to the fundamental (negative) unit &; of Q(,/d) given by: &3 = 4(my + v1./4d).
Then ¢ = +¢f for some & = 1 (mod 2) (see e.g. ref. 18, p. 303) and corre-
spondingly 4 = +-A¢. Defining now ¢ by:

my = 2 sinh ¢ (3.27)

it follows that 2 sinh k¢ = my = Agr(m1) and vy = vigg(my), then, is a
simple consequence of (3.23).

Corollary 4.1. The improper negautomorphs of infinite order
A = LAF* of g(B) = (a, b, ¢) are in one-to-one correspondence with the
negative units e = 4*** of Q(,/d), for ke Z.

Remark. The restriction in corrollary 4.1 to negautomorphs of infinite-
order, 7.e. to the case m; > 0, is due to the fact that in the case of negauto-
morph of finite order the correspondence with negative units breaks down.
For:m = 0 the Pell (minus) equation becomes dv? = 4 with positive solutions:

v =2 for d=1,
v =1 for ad =4,

In both cases Q(,/d) = Q and the only units are -1, thus positive. For
@ = 1, no primitive metric tensor is possible (seeref. 17 theorem 75, p. 101),
but for 4 = 4, the metric tensor g(B) = (I, 0, —1) admits improper neg-
automorphs of finite order:

A=+40=+ (? (l)) (3.28)
Note also that the group of g-automorphs of a given primitive g(B), is in
general not isomorphic with the group of units of Q(y/d) for d being the
discriminant of g(B). In fact, no correspondence has been formulated
between units of Q(,/d) and improper automorphs or proper negautomorphs
of g(B).

The one-to-one correspondence between units and g-automorphs can be
broadly summarized as follows:

positive units <> proper automorphs

(also of finite order),

negative units «» improper negautomorphs
(only of infinite order).
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A table indicating real quadratic fields Q(«/Do) having negative units can
be found in ref. 19, pp. 271-274 for Dy up to 97.

We now go over to proper negautomorphs. In the same way as in (3.26)
and using (3.13) and (3.3d) one sees that the general form of a proper
negautomorph of a primitive g(B) = (a, b, c), if it exists, is given by:

N =+

t(m — bv) —éb;l-— (m — bv) -+ cv) (3.29)

av —% (m — bv)

with (m, v) solutions of the Pell (minus) equation (3.25a). Note that these
solutions need be integral (and therefore of the form (3.25b)). Comparing with
(2.16) and (2.17) one finds that IV can be written as:

b
1 —_—
N = Mod, with Mo= p ) (3.30)
0 —1

Mo is an improper automorphism and A an improper negautomorphism as
in (3.26). The point is that only if  divides b, i.e. if g(B) is ambiguous, are
Mo and A necessarily unimodular, i.e. (m, v) are integral solutions of (3.25).
In general this is not the case. As an example let us consider the lattice
defined by g(B) = (5, 11, —5). One verifies that g(B) is not ambiguous and
does not admit improper negautomorphs. In fact the discriminant is
@ = D = 221 and the fundamental unit of Q(,/221) is &1 = }(15 + /221),
thus of norm 4-1. But g(B) does admit proper negautomorphs, namely, for
example:

0 —1
Ny =<1 o) (3.31)

which may indeed be obtained from (3.29) for m = 11/5 and v = 1/5, a
non-integral solution of m2 — 22142 = —4,

We think that in the case of enantiomorphic lattices, proper negauto-
morphs can always be put into the form (possibly after a suitable basis
transformation):

N = NoL (3.32)

where Ng is as in (3.31) and L is an arbitrary proper automorph of g(B). This
is indeed the case in the example mentioned above, although in general,
we have not been able to prove it. Clearly proper negautomorphs need
further investigation. '

4. Classification of primitive lattices. Let A be an oriented lattice defined
by primitive g(B) = (a, b, ¢), @ > 0, according to (2.13). By A’ we indicate
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the mirror lattice of A given by:
A" = XA with XeGL(2,Z) — SL(2, Z). (4.1)

We know that if 4’ = 4, the lattice is ambiguous, otherwise A and A’
form an enantiomorphic pair.

We now define 4, the inverse of lattice A, as the lattice of {—g(B)}+. Here
we have to consider the proper arithmetic class of —&(B) = (—a, —b, —¢),
because of the convention (2.13). We have the following correspondences

A={gB)  and T {—g(B)s. (42)

In the case where A = 1 we speak of a stable lattice, otherwise A and 1
are called unstable.

Proposition 5. A lattice A defined by primitive g(B) according to
- (2.13) is stable if and only if it is left invariant by proper negautomorphs of

g(B). \

Proof. Suppose A = A, this means that —&(B) € {g(B)}+; thus there is
a NeSL(2,Z) such that N%g(B) N = —g(B). Clearly N is a proper
negautomorph. The converse is also true, as can be seen by reversing the
arguments.

Corollary 5.1. A lattice 4 of a primitive g(B) (1, 0, —1) of discrimi-
nant 4 > 0, which is ambiguous and stable is left invariant by improper

TABLE (4.3)
Classification of relativistic primitive lattices
Transformations leaving A Characterization of Type
imvariant the lattice
negautomorphs ambiguous A=4a
) stable Ad=4a I
lmproper A=4a negative A =4
automorphs
A= A automorphs only ambiguous Ad=4a
unstable A #= A4 II
A+ A positive A £ A
proper enantiomorphic A £ A’
negautomorphs stable Ad=1 II1
A=1a positive A = A
no improper improper enantiomorphic 4 % A’
automorp}}s negautomorphs unstable A= Iv
A4 A=a negative A =1
proper enantiomorphic A £ A’
automorphs only unstable A £ 4 A%
(no negautomorphs) _Ppositive A = A4’
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negautomorphs of g(B). The real quadratic field Q(,/d) has a negative
fundamental unit.

We call such a lattice with (4)’ = (A') = A’ a negative lattice. If A == 1
the lattice is said to be positive. In this case there are no improper negauto-
morphs of g(B) and the units of Q(,/d) are all positive.

Using these various definitions relativistic primitive lattices can be
divided into five different types as indicated in the table (4.3).

Explicit examples are indicated in the appendix showing that lattices
of the five different types effectively occur.

There are infinitely many primitive lattices and it is therefore worthwhile
to group some of them in families of lattices having some peculiar properties.

Given a value 4 of the discriminant, there is always a principal quadratic
form with this discriminant (see e.g. ref. 16, p. 119). Accordingly we call
principal lattices Pg, those lattices which are defined by the correspondence

4 1 .
<1, I, d) if d
4
a
<1, 0, - __> T
. 4

Principal lattices are always ambiguous. For the inverse principal lattices
P one finds:

f

1 (mod 4), (4.4a)
Pg <1

I

0 (mod 4). (4.4b)

([ d — 1
(d y ,1,——1) if d =1 (mod 4), (4.5a)

Pg <1

(Z_, 0, -1) if 4 =0 (mod4). (4.5b)

The concept of natural lattice plays an important rélein crystallography,
even if not yet generally recognized. The name ““natural” has been suggested
by W. Opechowski.

In order to explain the idea, consider a g-automorph X of a lattice 4. One
has ' .

Vyxed Xx=vyed. (4.6)

In general (¥, y) is not a basis of A but only of a sublattice. Suppose now
that there is an element ¢} € 4 and a g-automorph X of 4 such that (ef, Xe)
forms a basis of 4. In this case we speak of a natural lattice generated by X.
If X is an improper negautomorph

0 1
(o

we speak of a negative natural lattice; and if X is a proper automorph

—~1 0
(% )
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we speak of a positive natural lattice.

Proposition 6. For any # € Z, there are two positive natural lattices,
M, and its inverse M. The lattice M, is the principal lattice of discriminant
d = n? — 4. One has the following correspondences

Mgy < (1,0, 1 — 92)

Moyi1 <= (1,1, 1 — (v 4 1))
My < (2 —1,0, —1)
Mopis < (v(p + 1) —1,1, —1).

Proof. Consider a primitive lattice corresponding by (2. 13) to (a, b, ). The
general form of a proper automorph L being (2.21), the lattice generated by
a vector ¥ = x1¢] + %263 € /A and its transformed y = Lx = yef - Vo€

with 1 = $21(n — bu) — xecu and y; = xjau + $x2(n + bu) is a sub-
lattice of index A in A, where

A = (ax; + bx1xs + cx2) . (4.8)

VyveZ (4.7)

For A natural: 4 = +1; consequently » = 1. Without restriction we
may suppose # = 1. Then for 4 = 1

ax; + bxixe +cxi =1 and d=#u® — 4.

According to a theorem of Lagrange (see ref. 17, p. 111) there is in the proper
arithmetic class of (a, b, ¢) a quadratic form (a', ¥', ¢') with @’ = 1.

Forn = 2v 4 1 (odd %), 3’ is also odd and, indicating proper arithmetic
equivalence by <, one has:

1 —d
(@,0,0) L (1,0, ¢y L (1,1,¢" =(1, 1,

)r——(l, I, 1—w(y+1)).

For even n, n = 2, &' is also even and, analogously, one finds:
a
(@ b,¢) L (1,8,¢) L (1,0,¢") = (1, 0, — Z) = (1,0, 1 — »2),

Suppose now A = —1 and ax} + bx1xs 4 cx2 = —1. As above, in the
proper arithmetic class there is an (a’, %, ¢’) with ¢’ = —1, and one finds the
inverse lattices M, in the same way.

Corollary 6.1. For getting all positive natural lattices it is sufficient
to consider all integers # > 0, since M_,, = M "

Proposition 7. The value # = 3 is the only one for which M, = M,.
The lattice M3 is of type I.

Proof. For #» = 3 the discriminant of M 31s d = 5 and the fundamental
unit of Q(,/5) is negativel?). Being ambiguous and negative, M3 is stable.
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Quadratic fields of discriminant d = %2 — 4, for ln| > 3, have only
positive units. To prove this, suppose that there are integral solutions of the
corresponding Pell (minus) equation. Take the least positive one (my, v1).
It follows that the least positive solution of the Pell (plus) equation for same
discriminant is given by

ny = m? + 2 and U] = Myv1. (4.9)

This can be seen by squaring the improper negautomorph 4, of (3.24). But
for natural lattices, #; = 1, and this implies my = vy = 1, thus #n; = 3,
which is contrary to the hypothesis.

Proposition 8. For any m € Z there is a negative natural lattice N,,,
which is the principal lattice of discriminant d = m2 -+ 4. One has:

Now = (1,0, —(1 + u?)) YueZ, 0,
Noyw1 = (1,1, 1 — u(p + 1)) YuelZ.

Proof. The proof is obtained exactly as in proposition 7. One finds N,,
generated by the improper negautomorph 4 (3.26) of a primitive (a, b, c)
with (m, v) = (m, 1), so that d = m2 + 4. Applying Lagrange’s theorem
one arrives at the desired results.

(4.10)

Corollary 8.1. For getting all negative natural lattices, it is sufficient
to consider integral positive m (since N_p, = Ny,).

Corollary 8.2. Any negative natural lattice N, is stable (N = Np).

Corollary 83. The only case where negative and positive natural
lattices coincide is for m = 1 and » = 3, i.e., N; = Ms.

We shall also mention two other properties that give a geometrical inter-
pretation of the least positive solution of Pell’s equation. We shall omit the
proof as it can be derived straightforwardly.

Proposition 9. Suppose d € Z a given positive discriminant (4 € Z) and
(1, u1) the least positive solution of the corresponding Pell (plus) equation.
The positive natural lattice M, is a sublattice of index #; in the principal
lattice Py.

Proposition 10. Suppose d a given positive discriminant appearing
in a Pell (minus) equation, which has non trivial solutions, and let (my, v;)
be the least positive one. The negative natural lattice M, is a sublattice
of index vy in the principal lattice Pg.

Quite generally, as all primitive lattices of same discriminant have equal
surface of their elementary cell (4 = —4 det g(B)), there is an obvious
generalization of the last two propositions.
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S. Some properties of ambiguous lattices. The language of quadratic forms
is a very convenient one for the matter discussed in this section and for
referring to the literature. Only primitive quadratic forms are considered
here, and in this section by equivalency (2.8).

We recall that a form (a, b, ¢) is ambiguous if & divides 4. In this case the
proper arithmetic class coincides with the arithmetic one (seeref. 17, p. 71):
the lattice represented by the forms of the class is ambiguous and vice versa.

An ambiguous form is called rectangular if b/a is even and rhombic if bla
is odd. This nomenclature is understandable on the basis of the following
proposition.

Proposition 11. A rectangular form is equivalent to one with 4 = 0;
a rhombic form to one with & = 4. More explicitly:

(a, 2ka, ¢) ~ (a, 0, ¢ — k2a) VielZ, 51)
(@, 2k + 1) a,c) ~(a,a,c— k(k+ 1) a). '
Proof.
1 O\/a ka\ (1 —rk . 1 0
—k 1 )\ka  ¢J\O 1) \0 ¢—#k%)’
2k 41 @
( 1 0) * 2 (1 —k) e 2
—k 1J\ 2 1 1)
" \—f’—zi_ a c 0 —‘2‘— c—h(k 4+ 1) a

It is in general not easy to decide whether given a quadratic form (@, b, ¢)
is equivalent to an ambiguous one or not, the number of equivalent forms
being infinite. The standard approach is to go over to equivalent reduced

forms (see ref. 18, p. 100). The conditions for a form (a, 5, ¢) to be reduced
are:

0<d—b<2al< . Jd+b and 0<b < Jd (5.2)
and imply also
0< Jd—b<2c|<.fd+b. (5.3)

The number of equivalent reduced forms is finite (ref. 17 theorem 79, p. 103).
These can be ordered into a chain of equivalent reduced forms.

Proposition 12. A rectangular form is equivalent to a reduced rectangu-
lar form. The same is true if one replaces rectangular by rhombic.

Proof. We show first that any primitive (4, 0, C) is equivalent to a
reduced form (e, 2ka, c). Suppose |A| < |C| and take for % the largest
rational integer satisfying the inequality: 0 < JICI — |k/]4] (d is not a
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square). The form (4, 0, C) is equivalent to the reduced one (4, 2%A,
C + k24). If |A| > |C| the same can be proved by considering the (equi-
valent) form (C, 0, 4), called the associate of (4,0, C).

In the case of a rhombic form, one verifies that any form (a, |a|, ¢) with
—ac > 0 is reduced. Now a rhombic form can always be given as (44, 4,
+C) with 4, C > 0. The only non-reduced cases are (4, 4, C) and (—A4, 4,
—C). The first form is equivalent to (4C — A, A — 4C, C), the second one
to (4 — 4C, A — 4C, C) which are both reduced rhombic forms.

We may distinguish between three sorts of ambiguous lattices:
(i) A lattice is rectangular (R) if any ambiguous form representing it is
rectangular. A
(i) A lattice is rhombic (D) if any amblguous form representmg it is
rhombic.
(iii) A lattice is mixed (RD) if it is represented by rhombic as well as by
rectangular forms.

Corollary 12.1. In a chain of reduced equivalent forms representing
an ambiguous lattice, there are always two ambiguous forms. If both of these
are rectangular (or both rhombic) the lattice is rectangular (or rhombic). If
one form is rectangular and the other is rhombic, the lattice is mixed (RD).

Proof. See ref. 17, p. 116 and use proposition 12. Let us remark that this
classification of ambiguous lattices has a deeper meaning than one might be
tempted to think initially. One can e.g. show that a RD-lattice cannot be
of type I. This result will be proved and discussed in a subsequent paper 21).

6. Isotropic lattices. A lattice is called isotropic if it contains isotropic
lattice vectors. One may then always choose a lattice basis B’ = (ef, e3)
with metric tensor g(B’) = (0, b, ¢) having a square discriminant d = 52
(b eR).

In particular if the lattice is primitive, then its discriminant is a squared
integer. This property is characteristic for isotropic primitive lattices.

Proposition 13. A primitive lattice is isotropic if and only if its dis-
criminant is a squared intéger. v :

Proof. We may suppose the lattice given by a primitive g(B) = (a, b, ).
The lattice is isotropic if and only if the corresponding quadratic form:

fx,v) = ax? + bxy -+ cy2, Vx,yeZ (6.1)

represents zero over Z. The necessary and sufficient condition for (a, b, c) to
represent zero over the rationals Q (i.e. for x, y € Q) is that the discriminant
d be a squared integer (see ref. 20, p. 395, theorem 10); conversely, if 4 is a
squared integer, than (4, b, ¢) also represents zero over Z.
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Proposition 14. The only proper automorphs of an isotropic lattice
are F and —E.

Proof. Consider the metric tensor g(B) = (0, b, ¢) of an isotropic lattice
and its automorph

d
Then (for b s 0, because 4 > 0):

Se(z ﬂ) eSL(2, 2).

g=y=0, a =0 and ad = 1. (6.2)

Proposition 15. A primitive isotropic lattice given by g(B) = (0, b, ¢)
is:
() ambiguous if & divides ¢ — 1,
(i) stable if b divides ¢2 + 1,
(i) negative if & divides 2.

Two of the three conditions imply the third one.
Proof. Let

S = (: ’Z) eGL(2, 2)

and g(B) = (0, 4, ¢) with ¢ 52 0. If S is an improper automorph of (0, 5, ¢
then:

ab + yc = 0, o= —4¢ and 0 — By = —1.

This means

‘ c2 — 1
S=J_r( ’ b ) (6.3)
—b —c

If S is a proper negautomorph, then:

ab 4 yc = 0, o= —4§ and b — By =1,
giving
¢+ 1
c
S = —l_—( b ) (6.4)
—b —c

If now S is an improper negautomorph, then:

y =0, Bb = (a—d)c and ) = —1

)
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1.8.:
| 2¢
S=4 b . (6.5)
0 —1 ‘

As b and c are relatively prime, it follows that & divides 2. Clearly two of the
three relations imply the third one.

If now ¢ = 0, we have for the primitive lattice g(B) = (0, 1, 0), and the
isotropic lattice is ambiguous, stable and negative. In fact we have in this
case:

improper automorphs: M =4 ((1) (1)),
0 1
proper negautomorphs: N = i( | 0), (6.6)
. 1 0
Improper negautomorphs: A=+ (O 1).

As in table (4.3) one may distinguish between different types of primitive
isotropic lattices. Note, however, that type IV lattice (enantiomorphic,
unstable and negative) does not occur, because if 4 = 2, then ¢ is odd and
b divides ¢2 4 1; the same is trivially true for b = 1. The general situation
is illustrated in the following table.

TABLE (6.7)
Classification of isotropic primitive lattices with metric tensor g(B) = (0, b, ¢)
Lattice Characterization Conditions Examples of g(B)
type of the lattice A on the metric tensor
ambiguous 4 =47 b=1 or (0, 1, 0) and
I stable A=4a b=2
negative A=A andc=1(mod2) (0,2, —1)2a (1,0, —1)
ambiguous A =4 b | c2—1
II unstable A # A b+ ¢c% 41 (0, 3, —2)
positive A % A b # 1,2
enantiomorphic A = A’ b +c¢%—1
IIT  stable A=A b | ¢+ 1 (0, 5, —2)
positive A+ A b#1,2
enantiomorphic A # A’ b+c%2—1
v unstable A=A b+c2+1 (0, 7, —2)
positive A = A b#1,2

The conditions for an ambiguous primitive isotropic lattice to be rhombic
or rectangular are expressed by the following proposition.
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Proposition 16. An ambiguous primitive isotropic lattice with metric
tensor g(B) = (0, b, ¢) is rectangular if 4 is even and rhombic if b is odd.

Proof. Let us first remark that an ambiguous isotropic lattice is either
rhombic or rectangular, because it admits only two mirrors (4 2), which
then belong to the same arithmetic class.

Suppose the lattice rectangular; then:

(0,8,¢) 2 (4,0,C) by S —_—(;‘ 5) e SL(2, Z)
giving the conditions:

246 = yb, —2Cy = 89, 2(yc + pA) = —ab,

2(0c — aC) = —pb, (6.8)

which implies

b =0 (mod?2).
Suppose the lattice rhombic, then by S as above (0,8,¢) (4, 4, C), giving

ab = A(26 — v), 0b = A(6 — 2y); (6.9)
however, § or v is odd, thus:

b =1 (mod 2).

7. Bravais classes. One has to distinguish between Bravais classes and
relativistic Bravais classes. We have already defined the first concept by
condition (2.10). The second arises only if one considers the identification
of isomorphic space-time groups as discussed in ref. 3. In this section we
consider only the subdivision of relativistic lattices into usual Bravais
classes. Having these, it is very easy to go . over to relativistic Bravais
classes.

A first and important distinction can be made between relativistic lattices
with holohedry of finite order (the ametric case) and lattices with holohedry
infinite order (the metric case).

(a) Lattices with holohedriés of finite order. In section 2 and
6 we have seen that lattices with metric tensors proportional to the integral
ones, with discriminant not a squared integer, always have an infinite holo-
hedry. Therefore only real incommensurable (@, b, ¢) and/or isotropic (0, b, ¢)
give rise to lattices with finite holohedries.

Proposition 17. The holohedry of a lattice is of finite order if and
only if the lattice is isotropic and/or has an incommensurable metric tensor
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g(B) = (a, b, ¢). This means that for no real positiv k& are ka, kb and k¢
rational integers.

Any lattice is left invariant by the identity E and by the total inversion
—E. Lattices that are invariant only with respect to these two elements
have holohedries that belong to a single arithmetic class, which defines the
oblique Bravais class. The corresponding holohedry is Hg = {—E} =< Cs.

In the relativistic case, mirrors M are the only other lattice symmetries
of finite order. We therefore consider ambiguous lattices. The holohedry of
isotropic and/or incommensurable ambiguous lattices is:

H = {—E, M} ~ Ds. (7.1)

In fact, two mirrors My and M,, where M; # J-M, generate a proper
Lorentz transformation of infinite order (cf. 3.4).

We have now to find out the arithmetic classes of (7.1). These are the
same as the arithmetic classes of crystallographic Lorentz mirrors.

Proposition 18. There are two arithmetic classes of crystallographic
improper Lorentz transformations: the rectangular class {Mg} and the
rhombic class {Mp} where

1 0 1 1

Proof. Any Lorentz mirror is of the form:

_ cosh ¢ sinh ¢
Ms= =+ <—~ sinh ¢ —cosh qS)

M 4 leaves invariant the space-like direction
u = k(cosh 3¢ e; — sinh 14 ¢y)
with % real positive; and M_ leaves invariant the time-like direction
p = k(sinh ¢ e; — cosh {4 es),
with % real positive, where as usual g(B) = (1, 0, —1). One has
Mip= -4u and M.op = Fp. (7.2)
M, being crystallographic, there is a S € GL(2, R) and a basis
BS = B’ = (e1, ¢3), such that:
M, =S1M.SeGL(2 2) - (7.3)

and there are lattice vectors in the x4 and p directions (for more details, see
refs. 21 and 22). According to the results of section 2 of this paper, there is,
in the relativistic geometric class of lattices having the same g(B’), a lattice A
left invariant by M which lattice has u as first basis vector (u = ¢7). This
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means that there is a basis B” = (e], ¢5 =) B'S’ of /A such that:

1 :
SIMLS = M =(O _)1)) with yelZ. (7.4)

The same can be said for M_ taking ¢] = p. By:

I —u\/1 Y\/1 %)_(1 )/—|-2n) Vi e 7 (7.5)
(0 1)(0 —1>o 1) \o —1 )

one sees that:

(g _T)N(é ”(“_1_0;12)). (7.6)

Furthermore one verifies that Mg is not in the same arithmetic class as
Mp. Finally

Mgp 2 — Mp and Mp 2 — Mp. (7.7)

To prove this, it is sufficient to interchange the rdle of p and 4 in the de-
monstration above.

According to proposition 18, holohedries (7.1) belong to two arithmetic
classes. Lattices having holohedries equivalent to the rectangular class
belong to the rectangular Bravais class; those with holohedries equivalent
to the rhombic class belong to the rhombic Bravais class. Note that jr—
variance with respect to Mg implies g(B) = (a, 0, ¢) ; invariance with respect
to Mp gives g(B) = (a, a, ¢). This explains the name of the class.

To conclude, there are the following three Bravais classes of lattices in
the ametric and isotropic cases.

(i) The rectangular Bravais class. The lattices Ar belonging to
this class have either an incommensurable or an isotropic metric tensor
8(B’) = (a', &, ¢’) such that there are real a, ¢ with:

(@,b,c) & (a0, c), a > 0. (7.8)
Their holohedry (with respect to a rectangular basis) is:

Hg = {—E, Mg} o~ D, (7.9)

(i} The rhombic class. The lattices Ap belonging to this class have
either an incommensurable or an isotropic metric tensor gB’) = (', b, c’)
such that there are real a, ¢ with ‘

(@0, ¢') 2 (a,a, ¢), a > 0. (7.10)
Their holohedry (with respect to a rhombic basis) is:

Hp = {—E, Mp} o~ D, (7.11)
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(i) The oblique Bravais class. All incommensurable or 1sotropic
lattices that are neither in the rectangular nor in the rhombic Bravais class
belong to the oblique Bravais class. Their holohedry is:

Hy = {—E} =~ Cs. (7.12)

(b) Lattices with holohedries of infinite order. As we have
already seen in section 2, we may restrict our attention to primitive lattices
whose discriminant is not a squared integer. In what follows by primitive
lattices we mean non-isotropic primitive lattices.

According to proposition 3 any proper automorph of a primitive lattice
is given by (3.14) and is therefore generated by the total inversion —E and
the fundamental Lorentz transformation Ly, which leave the lattice in-
variant.

The holohedry of an enantiomorphic primitive lattice is thus given by:

He = {—E, Lo} 2 C., X Ca. (7.13)

Any improper automorph M of an ambiguous primitive lattice is the product
of a particular mirror My leaving the lattice invariant and a certain proper
automorph. It follows that the holohedry of a primitive ambiguous lattice
Is:

Hg = {—E, Ly, Mo} 22 Do, X Co. (7.14)

We do not have to investigate the arithmetic classes of (7.13) and of (7.14),
for we know already the result:

The proper arithmetic classes of primitive indefinite quadratic forms are
in one-to-one correspondence with the Bravais classes of metric lattices.
In each Bravais class we have singled out by (2.13) a primitive lattice.

A list of chains of equivalent reduced quadratic forms corresponding to
primitive lattices is given in the appendix for a number of discriminants.
The table needs some comments.

Usually reduced quadratic forms are tabulated according to the increasing
value of the discriminant. It is well known that the number of different
arithmetic classes for a given discriminant is finite (see ref. 17, theorem
79, p. 103). The least positive solutions of Pell's equation are determined
by a given discriminant.

In our classification, however, we have adopted another ordering criterion
that is based on the kinematical interpretation of the proper Lorentz trans-
formations leaving a relativistic lattice invariant. To a proper Lorentz trans-
formation of infinite order there corresponds the transformation from an
inertial frame to one moving with relative velocity v in the x direction (the
only spatial dimension in two-dimensional Minkowskian space). The absolute
value of v is determined by the trace n € Z of the Lorentz transformation
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considered. One has:

#n=2cosh¢ = —————— (7.15)

giving:

_Vm—4 | (7.16)

We indicate below the correspondence for low values of #.

TaBLE (7.17)

Kinematical interpretation of »

n 3 4 5 6 7 8
J5 J3 J21 22 3./5 J15
Yn 3 2 5 3 7 4
C
0.745 0.866 0.916 0.942 0.958 0.968

From the physical point of view we expect that the lowest values of # are
the most interesting ones. Therefore we have ordered the Bravais classes
of primitive lattice according to increasing value of #.

For a given #» it is easy (by looking at the factor decomposition of #2 — 4)
to determine all possible integral values of # and 4 in the Pell equation.
Knowing the discriminant &, the corresponding arithmetic classes are
derived by standard methods (see e.g. ref. 17).

8. Concluding remarks. By means of this paper we have laid down the
foundation of a two-dimensional relativistic crystallography. The next step
consists in determining of the arithmetic classes of relativistic point groups.
These can then be used for the derivation of all two-dimensional space-time
groups.
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APPENDIX

63

Bravais classes of primitive (non-isotropic) relativistic lattice (for » < 25)

w u d Chains of equivalent primitive reduced forms Type Lattices
1 5 [1,1, —1][—1,1, 1] ID M3z Ny
112 [1,2 =-2][—2, 2 1] IIRD My

[2’ 2’ - 1][— 1: 2: 2] le

5 1 21 [1,3, =3][-3,3, 1] IID  Ms

3,3, —1][—1,3, 3] Ms
6 1 32 [1,4, —4][—4, 4, 1] IIRD Mg
[4': 4; —1][— 1’ 4) 4'] Mﬁ
2 8 [1,2, —1][—1,2, 1] IR N3
7 1 45 [1,5, —5][-5, 5, 1] IID My
(5,5, —1][—1, 5, 5] M-
3 5 [1,1, —1][—1,1,1] ID Ny
8 1 60 [1,6, —6][—6,6, 1] IIRD Ms
[6,6, —1][—1, 6, 6] Mg
(2, 6, —3][—3, 6, 2] IIRD
[3, 6, —2][—2, 6, 3]
9 1 77 [1,7, =7][-7,7,1] D M,
(7,7, —1][—1,7,7] My
10 1 96 [1,8, —8][—8, 8, 1] IIRD M;o
(8,8, —1][—1, 8, 8] Mo
[3, 6, —5][—5, 4, 4][4, 4, —5][—5, 6, 3] IIRD
(5,6, —3][—3, 6, 5][5, 4, —4][—4, 4, 5]
2 24 [1,4, =-2][—2 4, 1] IIR Py
(2,4, —1][—1, 4, 2] ‘ Pay
11 1 117 [1,9, —=9][—9, 9, 1] 1D~ My
[9,9, —1]1[—-1, 9, 9] M1y
3 13 [1,3, —1][—1, 3, 1] ID N3
12 1 140 [1,10, —10][—10, 10, 1] IIRD Mis
[10, 10, —1][—1, 10, 10] Mz
[2, 10, —5][—5, 10, 2] IIRD
(5, 10, —2][—5, 10, 2]
13 1 165 T[i,11, —11][—11, 11, 1] IID  Miys
[11, 11, —1][—1, 11, 11] Mis
{3: 9: _7][—7: 5» 5][5; 5.' —7][—7) 9: 3] IID
(7,9, =31[—3, 9, 7][7, 5, —5][—5, 9, —3]
14 1 192 [1,12, —12][—12, 12, 1] IIRD Mjia
[—1, 12, 12][12, 12, —1] M4
[3,12, —4][—4, 12, 3] IIRD

[—3, 12, 4][4, 12, —3]
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(Appendiz continued)
nw uw a Chains of equivalent primitive reduced forms Type Lattices
14 2 48 [1,6, —3][—3, 6, 1] IIR Py
[_1: 6: 3][31 6: _"1] P48
4 12 [1,2, —2][—2, 2, 1] IIRD M,
[—11 2: 2:“:2: 21 _1] le
15 1 221 [1,13, —13][—13, 13, 1] IID  M;ys
[—1, 13, 13][13, 13, —1] M;s
[5, 11, —5][—5, 9, 7][7, 5, —7I[—7, 9, 5] II1
[—5, 11, 5][5, 9, —7][—7, 5, 7][7, 9, —5]
16 1 252 [l,14, —14][—14, 14, 1] IIRD Mg
[—1, 14, 14][14, 14, —1] M
[2, 14, —7][—7, 14, 2] IIRD
[—2, 14, 7][7, 14, —2]
3 28 [1,4, —3][-3,2 2][2 2 —3][<3, 4, 1] IIRD Pag
[—1,4,3][3,2 —2][-2,2 3][3, 4, —1] Pag
17 1 285 [1,15, —15][—15, 15, 1] IID My,
[—1, 15, 15][15, 15, —1] My
[3, 15, —5][—5, 15, 3] IID
[—3, 15, 5][5, 15, —3]
18 1 320 [1,16, —16][—16, 16, 1] IIRD Mg
[—1, 16, 16][16, 16, —1] Mg
[4, 12, —11][—11, 10, 5][5, 10, —11][—11, 12, 4] IIRD
[—4, 12, 11][11, 10, —5][—5, 10, 11][11, 12, —4]
18 2 80 [1,8, —4][—4,8, 1] IIR Py
[—1,8,4][4, 8, —1] Py
20 [1,4, —11[—1, 4, 1] IR Ny
8 5 [1,1,—1][—1,1, 1] ID N
19 1 357 [1,17, —17][—17, 17, 1] IID My
[—1, 17, 17][17, 17, —1] My
[3, 15, —11][—11, 7, 7][7, 7, —11][—11, 15, 3]  IID
[—3, 15, 11][11, 7, —7][—7, 7, 11][11, 15, —3]
20 1 396 [1,18, —18][—18, 18, 1] IIRD Mg
[—1, 18, 18][18, 18, —1] M2
[2, 18, —9][—9, 18, 2] IIRD
[—2, 18, 9][9, 18, —2]
[5, 16, —7][—7, 12, 9][9, 6, — 10][— 10, 14, 5]
[—5, 16, 7][7, 12, —91[—9, 6, 10][10, 14, —5] v
[—7, 16, 5][5, 14, —10][—10, 6, 9][9, 12, —7]
[7, 16, —5][—5, 14, 10][10, 6, —9][—9, 12, 7]
3 44 [1,6, —2][—2 6, 1] Py

[—1,6,2][2 6, —1]

IIRD
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(Appendix continued)

nw o u ad Chains of equivalent primitive reduced forms Type Lattices

21 1 437 [1,19, —19][—19, 19, 1] IID Mg
[—1, 19, 19][19, 19, —1] My

22 1 480 [1,20, —20][—20, 20, 1] IIRD Mo
[—1, 20, 20][20, 20, —1] Mo
[4, 20, —5][—5, 20, 4] IIRD

[—4, 20, 5][5, 20, —A4]
[8, 16, —71[—7, 12, 12][12, 12, —7][—7, 16, 8]  ILRD
[—8, 16, 7][7, 12, —12][—12, 12, 7][7, 16, —8]

[3, 18, —13][—13, 8, 8][8, 8, —13][—13, 18,3]  IIRD
[—3, 18, 13][13, 8, —8][—8, 8, 13][13, 8, —3]

2 120 [1,10, —5][~5, 10, 1] IIR  Pis
[—1, 10, 5][5, 10, —1] P20
(2,8, —7][—7, 6,3][3, 6, —71[—7, 8, 2] IIR
[—2, 8, 71[7, 6, —3][—3, 6, 7][7, 8, —2]
23 1 525 [i,21, =21][—21, 21, 1] IID  Mas
[—1, 21, 21][21, 21, —1] Mg
[3, 21, —7][—7, 21, 3] IID
[—3, 21, 7][7, 21, —3]
5 21 [1,3, —3][—3,3,1] . 1D Py
- [—1,3,3][3,3, —1] Pay
24 1 572 [1,22 —22][—22, 22, 1] IIRD M
[—1, 22, 22][22, 22, —1] M
[2, 22, —11][— 11, 22, 2] IIRD
[—2, 22, 11][11, 22, —2]
25 1 621 [1,23, —23)[—23, 23, 1] IID  Mos
[—1, 23, 23][23, 23, —1] Moas

[5, 21, —9][—9, 15, 11][11, 7, —13][—13, 19, 5]
[—5, 21, 919, 15, —11][—11, 7, 13][13, 19, 5] v
[—9, 21, 5][5, 19, —13][—13, 7, 11][11, 15, —9]
[9, 21, —5][—5, 19, 13][13, 7, — 11][—11, 15, 9]

3 69 [1,7, —5][—5,3,3][3, 3, —5][—5, 7 1] IID P
[—1, 7, 5][5, 3, —3][—3, 3, 51[5, 7, —1] Py
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