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Synopsis

A generalization of the concept of #-dimensional magnetic group is considered which
also admits discrete time translations. This leads to the study of crystallographic
groups in # + 1-dimensional Euclidean, Minkowskian, Galilean and product spaces.
Definitions are given for point groups, system groups, arithmetic and geometric
crystal classes, Bravais classes, lattice systems and space(-time) groups in these spaces.
As in the Euclidean case, space-time groups G#+l appear in (K, Z7t1, $)-extensions
with K a crystallographic point group and ¢ a monomorphism ¢: K - GL(n + 1, Z).
As it is not yet known under which conditions groups appearing in such extensions
may be interpreted as space-time groups, the classification of these groups is here
restricted to the case of finite K. This classification arises by identifying space(-time)
groups related by an isomorphism which takes into due account the various kinds of
translation elements. For known geometric point groups a constructive method to
derive all non-isomorphic space(-time) groups is given. The number of Bravais classes
in Euclidean and Galilean space turns out to be finite. It is enumerably infinite in
so-called product space and continuously infinite in Minkowskian space. The same is
true for the number of non-isomorphic space(-time) groups.

1. Introduction

In recent years an extensive study has been made of magnetic groups?!: 2).
These are n-dimensional crystallographic groups in which time inversion
is considered next to and in combination with space transformations.

If one admits also discrete time translations one is led to the study of
n + l-dimensional crystallographic groups. The problem is to find a suitable
space on which these groups act as transformation groups. Consider the
simplest possibility: a # - 1-dimensional Euclidean vector space which is a
vector space with a positive definite metric. The group of inhomogeneous
real linear transformations leaving this metric invariant is the Euclidean
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group E(n + 1). An # + 1-dimensional space group is a discrete subgrou,
of the Euclidean group which contains as a maximal abelian subgroup ;
translation group generating an » 4 1-dimensional lattice. As Ascher ap,
Janner3) have discussed, such a space group G™*1 may be obtained from g,
extension:

0> Zntl » Grtl 5> K — 1 ($) (L1

of a free abelian group Z7*1 by a finite group K called point group. The
operation of K on Z7+1 isgiven by a monomorphism ¢: K —GL(n + 1, 2,
In crystallography it is customary toidentify affine equivalent space groups,
According to Bieberbach4) two space groups are affine equivalent if anq
only if they are isomorphic.

However, the Euclidean space does not take into account the difference be-
tween time axis and space axes. The solution of the problem would be con-
sidering the #» + 1-dimensional Minkowskian vector space which has an indefi-
nite metric of signature (#, 1). The homogeneous real linear group leaving this
metric invariant is the Lorentz group, the inhomogeneous one is the Poincar¢
group. A relativistic space-time group is a discrete subgroup of the Poincarg
group with a maximal abelian subgroup of translations generating an# -+ 1-
dimensional lattice. Relativistic space-time groups can also be obtained from
extensions (1.1), but the general conditions under which groups appearing
in extensions (1.1) may be interpreted as relativistic space-time groups are
under investigation. Because in Minkowskian space one has to distinguish
between spacelike, timelike and isotropic vectors, equivalence of two space-
time groups is a stronger equivalence relation than plain isomorphism as
groups. We call two such groups isomorphic if there exists an isomorphism
between them which maps translations on translations of the same kind. To
find all non-isomorphic relativistic space-time groups is, as far as we know,
an unsolved problem even in the lowest dimension (» = 1). This is a con-
sequence of the indefinite character of the metric.

In the non-relativistic limit the Minkowskian vector space is transformed
into the Galilean vector space with a singular metric. In this same limit
the Poincaré group becomes the inhomogeneous Galilean group. A Galilean
space-time group is a discrete subgroup of the inhomogeneous Galilean group
with a maximal abelian subgroup of translations generating an # 4- 1-
dimensional lattice. In Galilean space one distinguishes space type vectors
{(n 4+ 10 component zero) and velocity type vectors (» 4 1t component
different from zero). Two Galilean space-time groups are called isomorphic
if there is a group isomorphism between them which maps translation ele-
ments on translations of the same kind.

Regarding the difficulties involved in the determination of relativistic and
Galilean space-time groups it is worthwhile to consider a last possibility:
the direct product of an #-dimensional Euclidean space (interpreted as space)
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and a one-dimensional Euclidean space (representing the time). We simply
call it product space. Actually this is the type of vector space one considers
implicitly when speaking of magnetic groups. The group of inhomogeneous
linear transformations leaving invariant the metric in both spaces is called
the inhomogeneous pseudo-Lorentz group. A generalized magnetic space-
time group (GM space-time group) is a discrete subgroup of the inhomogene-
ous pseudo-Lorentz group JP(n + 1) with a maximal abelian subgroup of
translations generating an # -+ l-dimensional lattice. In product space one
may distinguish three kinds of vectors: those lying in one of the two spaces
and a mixed type (with non-vanishing components in both spaces). Two
GM space-time groups are called isomorphic if there exists a group iso-
morphism between them mapping translation elements of a given type on
translation elements of the same type.
' The present part presents a study of the properties and the classification
of the space-(time) groups in the three first named different spaces. The
classification of GM space-time groups is not further treated, but this may
be done quite analogously. Some preliminary results are published in
technical reports3).

Before starting the discussion of the various crystallographic groups a
brief survey of the corresponding continuous transformation groups is given.

2. Metric spaces and transformation groups

Consider an # 4 1-dimensional real vector space R#¥1l. Provided with a
positive definite metric this is a Euclidean space. — If an orthonormal basis
€1, €2, ..., én+1 is chosen a vector x € R?+1 has real components (1, ..., x7+1)
and its norm is given by the non-degenerate quadratic form

n+1
I#lf = 3 ()2
The non-singular linear transformations leaving this metric invariant form
the orthogonal group O(# -+ 1). The inhomogeneous transformations leaving
the norm of the difference of any two vectors invariant form the group of
solid motions, the Euclidean group E(n + 1). The uniquely determined
maximal abelian normal subgroup of E(n + 1) is the # + 1-dimensional
translation group T+l E(n 4 1) is the semi-direct product

E(n + 1) = TnH1"0@xn + 1)

where O(n + 1) acts on T7*1 in the natural way. Denoting the elements of
E(n + 1) by (a, «), where ae 7?1 and « € O(n + 1), multiplication in E(n + 1)
is defined by

\ (a’ O‘) (br :B) = (ﬂ + ab’ 0‘/3)
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for all ¢, be T#*1 and all «, € O(n + 1). By ob is meant ¢(a) b, where ¢
is here the natural monomorphism O(n + 1) — Aut(77#+1).

Providing R#*! with an indefinite metric of signature (%, 1) one has ap
#n + l-dimensional Minkowskian space. — Choosing an orthonormal basis
e1, ..., ép+1 in such a way that

lledl|2 = 1 (t=1,..,n)
lensallt = —1
the norm of a vector with components x1, ..., 7+l is given by

ol = 3 (392 — (e

The orthogonal group of this metric is the homogeneous Lorentz group
O(n, 1). The inhomogeneous Lorentz group or Poincaré group JL(n + 1)
is the semi-direct product

JL(n + 1) = T*+170(x, 1)
where O(n, 1) operates on 77+l in the natural wéy.

By choosing another orthogonal basis in Minkowskian space by

e = ¢ (z = 1,,%) 21
en+1 = Centl (real positive ¢)
one obtains in the limit ¢ — co the # 4 1-dimensional Galilean space with
a singular metric. The corresponding limit of the Lorentz group is the
Galilean group G(n + 1) which is obtained in the following way. By Ot(n, 1)
we denote the one-component of O(x, 1) and by V:
— for odd #: the group generated by

, and 4
0 1 0 -1
— for even #: the group generated by

1 0 M 0 —1 0
" and " with M, = .
0 —1 0 1 0 1p-1

Then O(n, 1) is generated by Ot(», 1) and V.
Any 1 € Ot(n, 1) may be written as:

P, O][coshy © sinh ¥ On O
My) = 6 0 Tn-1 0 6
0.0 Il ]|sinhy O coshy|[0..0 1

where P, and Q, are n-dimensional orthogonal transformations. After the



CRYSTALLOGRAPHIC GROUPS IN SPACE AND TIME. I 545

basis transformation (2.1) and putting |v| = ¢y one has:

it ()= )

where v is a #-dimensional column vector; y(v) is an element of G(»n + 1),
and G(n + 1) is generated by what we denote as lim,_,, O*(%n, 1) and V.
The inhomogeneous Galilean group is the semi-direct product

JGn + 1) = T G(n + 1)

where again G(n -+ 1) acts on 77*1 in the natural way.
We call product space the direct product of an #-dimensional and a one-
dimensional Euclidean space. The metric in the first space is given by:

n
x2 = 3 (x)2
i=1
in the second one by
X2 = (xnH1)2,

The linear transformations leaving invariant the metric in both spaces form
the homogeneous pseudo-Lorentz group O(#, 1).

Proposition 1
O(n, 1) = O(n) x O(1).

Proof: Choose an orthonormal basis with ey, ..., ¢, in the first space and
¢n+1 in the second one. Then an element T € O(n, 1) is a matrix such that for
any x with components x1, ..., x2+1:

n n+l

Y2 =3 X TyTpxkal
=1k

i= 7 LI=1
and

-

n+1
(@m )2 = 3 Tyiy, g Tp41, 1x0xl
ki-1

From this follows

2Tudn=dm (R, I < n),
i=1
Ti a1 =Tn+1, =0 (1, B < m),
Ti+1,n+1 =1
Therefore the matrix 7 has the form
P 0
T =
(O n 1) (2.2)

where P is an orthogonal matrix.
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Proposition 2
The pseudo-Lorentz group leaves invariant all quadratic forms

a Y (542 + pxntl)2 (all real o and §).
i=1
This is a direct consequence of proposition 1. In particular O(n, 1) leaves
invariant the quadratic forms
n+1 n

Y (¥)2  and ¥ (x6)2 — (xn+1)2,
i=1 i=1
The inhomogeneous pseudo-Lorentz group JP(n 4 1) is the semi-direct
product:

JPn + 1) = T#1°Q(n, 1).

By choosing a basis in each of the spaces discussed one obtains iso-
morphic mappings onto R?*1 considered as real vector space. These mappings
induce isomorphic mappings of the groups E(» + 1), JL(n + 1), JP(n 4 1)
and JG(n 4+ 1) into the real affine group GIL(n + 1, R), which is the semi-
direct product of R?+1 by the real general linear group GL(» + 1, R).

For the rest of the paper we suppose that a fixed orthonormal basis is
chosen, if not stated otherwise. As # 4- 18 axis we take:

— in Minkowskian space the direction of the basis vector of norm —1;
— in Galilean space the direction obtained in its limit (2.1);

— in product space the one-dimensional Euclidean space.

The » -+ 1th axis is sometimes called ¢ axis.
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Once these bases are chosen the transformation groups may be identified
with their isomorphic images in GIL(n + 1, R).

Proposition 3:

on, 1) = On+1)NO0mn, 1)=0n+ 1)NGnr+1)=0MH,1)NnGrt1).
The proof is a direct consequence of proposition 1 and the fact that the
elements of G(# + 1) have the matrix form

{R.vl

G = (2.3)

om
0...0 41
where R € O(n).

Because in each space the group of solid motions is the semi-direct product
of the translation group by the orthogonal group of the space one has:

Proposition 4:
JPn+ 1) =En+1)n JL(n 4 1)
=En+ 1)n JGn 4 1)
= JLin+ )N JGxn + 1).

l

I

3. Euclidean space groups

We give here a brief summary of those properties of Euclidean space groups
which form a fundament for the subsequent generalization. At the same time
we introduce some new concepts. We refer to refs. 3 to 5 for more details and
for the proofs.

An n + 1-dimensional space group G7+1 is a subgroup of the Euclidean
group E(n+1) with Un+1 & TatlnGntla free abelian subgroup of rank n4-1
which generates over R the vector space 77+ (j.e. RUn*l = T7n+l), Let o
be the restriction to G**1 of the epimorphism ¢': E(n + 1)—0(n + 1) and
put K = Im o. Then it follows from the definition that U?+! is normal in
GmHtl, that Grt1/Un+l ~ K C O(n + 1) and that K acts effectively on Un+1,
Furthermore Unt! is maximal abelian and of finite index in G#+1, A set of
points equivalent by the operation of U#+! is called a # -+ 1-dimensional
lattice A (i.e. Untlxg = A). K is a point group leaving A invariant.

Each space group appears in an extension

0— Zntl, v, Gutl _o,, K, () *
Al / (3.1)
Untl

* In diagrams we often use the following notation: a homomorphism is denoted by
=, @ monomorphism by»>—, an epimorphism by —>, an isomorphism by .
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of Zn+1 by K with ¢: K - GL(n + 1, Z) a monomorphism. The subgrouyp
Un+1 is unique, so the monomorphism « = 7 o 4 is only variable in the iso-
morphism 4. Fixing 4is equivalent to choosing a basis of 4 or correspondingly
a set of free genmerators of U#+l. The monomorphism ¢ gives a n 4 |.
dimensional integral faithful representation of K. The group ¢(K) is called
an arithmetic point group.

Consider next to the diagram (3.1) the commutative diagram

Zn+1x
lz Un+l (3.2)
Zn+1’/iﬂ
where 1 and 1 are isomorphisms, ¥ an automorphism of Z#+1, i.e.
x€GL{n + 1, Z).

7 corresponds to another choice of basis U#+1. Then (3.2) induces a morphism
of group extensions:

0—»Zn-i;1_K,Gn+l -2/ RN (¢)
10 3
0—Zn+l . Gntl 9 K ] (')
such that
$lo) = (o) 171 (Va € K)

This means that ¢ and § are two Z-equivalent representations of K. The
condition of arithmetic equivalence for two point groups ¢(K) and §(K) is
weaker:

$(K) = y$(K) x1 (3-4)

and arises from the consideration of isomorphic space groups.
According to ref. 3, proposition 6, given two isomorphic space groups
G7+1 and G"*1, there exists a morphism of group extensions

00— Zn+l _« ,Gutl 2 K 3] (9{,)
zl ~ tlll ~ wl | (3.5)
O sZn+l _«,Gn+l_o K _ ($)
such that
Flwo) = yh(o) 271 (Va€ K)

with y € GL(n + 1, Z). This means that isomorphic space groups determine
the same arithmetic class, i.e. a class of arithmetically equivalent point
groups. As shown in ref. 3 in the lower extension one may always choose

$(K) = $(K). We call ¢(K) an arithmetic point group. Then denoting by
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Ny the normalizer of ¢(K) in GL{(n 4 1, Z):
1€ Ny E{xeGL(n + 1, Z)yd(K) ™+ = $(K)},

and one has the morphism

0 L gntl K, Gutl SV ] (qg)
S
O—oZntl s Gntl o, | 41 (‘5)

Hence one obtains all non-isomorphic space groups by finding all non-
equivalent extensions of Z7+1 by one representative of each arithmetic
crystal class.

The first problem is to find the arithmetic crystal classes. An element
of a space group may be written as (a, «) with a € 77" and « € O(n + 1).
For a given space group the elements « form the corresponding point group
K. In GL(n -1, R) the point groups of two affine equivalent spaces are
conjugate by a non-singular matrix and therefore similar. But two similar
point groups are even conjugate by an orthogonal transformation (ref. 6,
p. 47). Therefore similar point groups are conjugate subgroups of O(xn + 1),
i.e. geometrically equivalent. The equivalence class is called geometric
crystal class.

For a given point group K one defines a subset Lk of the set L of n - 1-
dimensional lattices A as follows:

Lx ={AdeL|KA = A},

Because of eqs. (3.1) and (3.4} a pair (K, A) with A e Lg defines an arith-
metic crystal class.

Proposition 5:

If the point groups K and K are geometrically equivalent, then for each
A€ Lg there is a A € Ly such that (K, 4) and (K, 4) determine the same
arithmetic crystal class.

Proof:
K =TKT-1 forsome TeO@n- 1),
]?(T/l) =74, so TAelsx.

On bases B(A) of A and TB(A) of TA both K and K correspond to the same
group of matrices ¢(K).
Consequence

To obtain one representative from each arithmetic crystal class it is
sufficient to consider one representative from each geometric class and to
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determine all arithmetic representations on bases of lattices left invariant
by this representative.

The maximal point group leaving a lattice invariant is its holokedry H.
A lattice A determines an arithmetic crystal class with representative ¢(H),
but the converse is not true. The arithmetic crystal class of the holohedr
defines the Bravais class of A. Two lattices belong to the same Bravais claés
if and only if their arithmetic holohedries are arithmetically equivalent. In the
same way the geometric class of the holohedry defines the system of A. Twq
lattices belong to the same system if and only if their holohedries are
geometrically equivalent.

For a given point group K a point group X is called enveloping if for every
A e Lg one has a group from the geometric class of K which leaves A in-
variant. The maximal enveloping group of K is called its system group K,
The reason of this terminology is that, for # < 3, each system group Kj is
the holohedry of at least one lattice from Lg,. So in these cases the system
groups and geometric holohedries are the same.

Example: 3-dimensional geometric groups, enveloping groups and system
groups. Notation:

A — B: B is an enveloping group for 4.
: C is a system group.

Point group System System Point group  System System
group group
1 — (triclinic)

32
— \ =
3-4 3 — (trigonal)

2
> (monoclinic)
m 6mm
~
6= 26223 (hexagonal]
222 ~4m—"
—
(orthorhombic) /
mm2—" 6°—s 6/m2
4/m m3
T~
4 = (tetragonal) 237432 3 (cubic)
S amm //' S izm—
4—42m 4

The set Ly is divided in two subsets: to the first subset belong those
lattices for which Ky is the holohedry, to the second one those for which this
is not the case. In both subsets, L, and LY, an equivalence relation is
defined:

i) in L%, two lattices Ay and Ay are equivalent if (Ko, A1) and (Ko, 42)
determine the same arithmetic crystal class; these classes correspond to
Bravais classes.



CRYSTALLOGRAPHIC GROUPS IN SPACE AND TIMIEL 1 551

i) in LY Ay and A5 arc equivalent, if they belong to the same Bravals
class.

The different arithmetic crystal classes corresponding to Ko are found
as follows. From each class in L) one chooses one representative A and con-
siders (Ko, A); among the classes of L}! one considers only those for which
the holohedry ¢(H1) has not a subgroup arithmetically equivalent to the
holohedry ¢{H2) of another class. From cach of these classes one chooses one
representative A and considers (H, A). The different arithmetic point groups
$(Ko) are arithmetically equivalent to a subgroup of a group from the class
(H, A). )

Example: The 3-dimensional system group Ko = 3 leaves invariant
lattices of the trigonal, hexagonal and cubic systems; 3m is holohedry for the
rhombohedral lattices of the trigonal system. If we denote the arithmetic
classes by the corresponding symmorphic space group syvmbol, this de-
fines the arithmetic point group R 3m, which is an arithmetic holohedry.
The arithmetic holohedries of the primitive, body-centered and face-
centered cubic lattices have a subgroup arithmetically equivalent to R 3m.
So the arithmetic point groups corresponding to 3m and not arithmetically
equivalent to R 3m are the arithmetically non-equivalent subgroups of an
arithmetic holohedry of a hexagonal latticc. There arc two of them, P 3ml
and P 3ml. So all together there are three arithmetic crystal classes corre-
sponding to 3m.

Proposition 6:

If Ky is the system group of A, then each arithmetic group ¢(KX) is arith-
metically equivalent to a subgroup of ¢(Ko).

Proof: ¢$(K) is an intcgral faithful representation of N related to a basis
of a lattice A, such that KA = A. Then also KoA4 = A. As K C Ky, also
B(K) C b(Ko).

Note that ¢(K) may contain several arithmetic point groups ¢{X) which
are arithmetically non-cquivalent. As a consequence of proposition 6 it is
sufficient to find the equivalence classes in Lg, for cach system group Ky
in order to obtain all arithmetically non-cquivalent ¢(Ky). Afterwards one
determines for each subgroup K C Ko arithmetically non-cquivalent sub-
groups $(K) of $(Ky).

Iinally one has to find all non-isomorphic extensions (3.1) for a given
arithmetic point group ¢(K). (For the theory of group extensions sce refs.
7-10.) Suppose the point group K to be given by generators o, ..., o, and
defining rclations

biler, ..., ) = ¢ (r=1,..,7

and suppose that 7(a) 1s a representative of the coset of Z741 in G7+1 which
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is mapped by ¢ (3.1) on « € K. Then the words
kgi = difr(a), ..., 7(or)) (C=1,..,7)

belong to kZn+1, see ref. 6. In order to define a group G**1 in the extensiop
these g; have to be solutions of

2 higi=0 (3.6)
i=1
where H = [k, ..., h,] are called the extension conditions for the group K,
see refs. 6 and 10. If {g;};-1,...,r satisfy eq. (3.6), the space group G#+1 jg
generated by the free generators «ay, ..., kan+1 of kZ7+1, the representatives
r{a1), ..., #(ay) and the relations

Ka; + xka; = ka; + wa; gij=1,.,n+1),
i(r(a1), ..., 7{ow)) = g (t=1,..7), (3.7
?(a) + ka — 7(a) = xaa = k¢p(a)a (a e Z7+], a e K).

In the same way @7+l is generated by zay, ..., Ran+1 and F(aa), ..., Fay).
If an isomorphism : G+l — G#+1 exists such that

Yr(e) = Re(a) 4 Fle) (Vo e K)

for certain ¢ € C}(K, Zn+1), the extensions are equivalent. The equivalence
classes of (K, ¢)-extensions of Z7+! form an abelian group Ext(K, Z#+1, ¢)
(seeref. 9), which is isomorphic to the second cohomology group H(K, Z#+),
Two groups G*+1 and G#+l appearing in equivalent extensions (3.5) are
isomorphic. However also two groups belonging to non-equivalent extensions
may be isomorphic. In this case they may be obtained from non-equivalent
extensions with the same ¢(K). According to ref. 3, proposition 7, two groups
in extensions with the same ¢$(K) are isomorphic if and only if it is possible
to find representatives of their equivalence classes with factor systems m
and m respectively, an automorphism w of K and an element yx of the
normalizer N,k of ¢(K) in GL(n 4- 1, Z) such that

m(ox, 0f) = gm(e, /) (Yo, B € K),
1h(e) @ = P(wa) ya (Va € K, Va € ZnH),

Here we state another equivalent criterion applicable in the case the groups
are given by generators and defining relations as in eq. (3.7).
If w is an automorphism of K choose for wa; a fixed word

(0a_1=wj(a1, ey ap) (7: 1, _“)v)_

Define
&fi(21, ..., &r) det d)i(wl(f(oq), veey f(ay)), ieey w,.(i(oq), cery I-‘(o(.y)))
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where
/g = pa(Flaa), ..., Flow)) (z=1,...,7).
Furthermore elements w;(oy)(¢ = 1, ..., 7;7 = 1, ..., ») of the integral group

ring ZK are defined by

v

pilrc(ar) + 7o), -, wlay) + 7(an)) = & X o) -c(oy) +

i=1

+ pi(r(ar), ..., 7(on)) (i=1,...,7).

Proposition 7:
Gn+t and Gn+1 are isomorphic if and only if there arc a) an automorphism
w of K, b) an element y € N g, and c¢) elements ¢(a) € Z7*1 such that

v

Fi@1s - 8r) + X miwoy) cloy) = x8e z=1,..7). (3.8)
j=1
Proof:
a) If in eq. (3.5) ¢ is an isomorphism, y is the restriction of ¢ to Z#*1 and
w is the induced automorphism one has3):

plwa) = gp(o) 377 (Vo € K).

Therefore y € Ny k-

$i(r(an), ..., 7(ow)) = xg; gives

Furthermore ¢ operating on the relation

di(Fwai), ..., Fwa)) + £ ¥ wi{way) - cloy) = kxg: (t=1,..7.
i=1
Choose for every wa € K a fixed word w (ag, ..., oy). Then

Flowa) = ka(wa) + we(Fe), ..., Flo))

for some a(wa) € Z2+1. One may choose a(wo) = O for this choice of words,
because this only gives an equivalent group. {Of course for another choice of
words w,(a, ..., &) in general a(wa) 7 0; it is well known that only in split
extensions one can have representatives #(«) in such a way that

7(af) = v(a) -+ #(B) for all o, feK).

Doing this one obtains relation (3.8).
b) On the other hand, if w and y are given in such a way that eq. (3.8) is

correct, one may define an isomorphism : G#*1 — Gn+l, where G#*+1 and

G+l appear in equivalent extensions, by
Ylea + (o)) =i ya + ke(a) + Hwa) (Vae Zrtl, Vae K, c(a) € Z7H1),

Then Gr+1 and G»+1 are isomorphic.
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So from a set of non-equivalent extensions for a given ¢(K) one cay
determine the non-isomorphic ones using proposition 7.

4. Relativistic crystallographic groups
A relativistic space-time group Gn*l is a subgroup of the inhomogeneoyg

Lorentz group JL(»n + 1) which contains a translation subgroup

Un+l 3ot Gntl i T+l which is free abelian of rank # 4+ 1 and which
over R generates 77+l This group U#t! is maximal abelian and normal i
Gn*1l. Analogously to the Euclidean case the relativistic point group

K =~ Gn+1]Un+1 is a subgroup ot O(n, 1) leaving 4 invariant and Gn+
appears in an extension

0—>Zntl » Gl > K — ] (#)

of a free abelian group Z#*1 of rank #» + 1 by the point group K, ¢ being a
monomorphism K — GL(»n 4 1, Z). One of the most important differences
from the Euclidean case is the fact that in general K is not finite. In the
present paper, however, we are concerned with space-time groups for which
the image in GIL({n 4 1, R) coincides with the image of a Euclidean space
group. Therefore the point groups considered here are always finite.

In Minkowskian space timelike, spacelike and isotropic translations occur
(having negative, positive and zero norm respectively). For that reason
we need a stronger equivalence relation than plain group isomorphism in
order to decide if two relativistic space-time groups may be identified or not.

Hence we define: two space-time groups Gn+! and Gn+1 are isomorphic
if there is a group isomorphism ¢: G#*+1 — G#+1 such that for the restriction
xo = $|U™+1 one has '

signflyofl® = sign [4F  (Vte U+, (4.1)

Here the sign of the norm of an isotropic vector is zero by definition.

Consider a space-time group G*+1 (If not stated otherwise in this section
we mean by space-time group always a relativistic space-time group), and
the commutative diagram

00— Zn+l, %, Gl S K 41 (4)
;.\ / : (4.2)
Un+l

Here ¢ is the injection of the normal subgroup U»*! into G#+1 and 4 is an
isomorphism which determines a set of generators of Un+1, If ¢; = (1,0, ...,0),
e2=1(0,1,...,0), ..., &g41 = (0, ..., 0, 1), then a basis B = (a3, ag, .., @n+1)
of the lattice A is defined by Ae; = a;. For the monomorpism « one has
« = 10 A. The reason why we consider ¢z and 1 next to « is the fact that
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space-time groups are not uniquely determined by their abstract group
structure. To the basis B corresponds a metric tensor g = g(B) with elements

giy = i 4y (th1=1,..,n+ 1.
The scalar product is given by the indefinite metric of U?+! induced by that
of Tn+1. A discrete translation group U”+1 (or the lattice A obtained in
Minkowskian space by operating with U%*1 on the origin) is defined by its
metric tensor up to a homogeneous Lorentz transformation. As K isa group
of homogeneous Lorentz transformations leaving invariant the metric tensor
one has

g(B) = ¢!(«) &(B) $(«) (any « € K)

where g(B) and ¢(a) refer to the same lattice basis B.
Now consider two extensions in which the same space-time group Gn»+l

occurs:
00— Zntl, £ Gl K1 (gb)
X Un+l H
4 _
o_,Zn+1 —x Gl K (¢)

The elements d; = A& (¢ = 1,2, ..., n + 1) form another basis B of A. The
monomorphism ¢: K — GL(n + 1, Z) is given by:

$lo) = xd() x 71 (Va e K).
The metric tensor corresponding to the basis B = (@1, @, ...,d n+1) 1S given
by:

g(B) = x%(B) x
So a space-time group defines a class of pairs (B, ¢(K)) with the following
equivalence relation: two pairs (B, ¢(K)) and (B, #(K)) are equivalent if:

Blo) = (o) 27 (Vae K),
and " (yeGLn + 1, 2)) (4.3)
g(B) = x%¢(B) «

Now consider two isomorphic space-time groups G?+! and G#*1 in the
commutative diagram

0=Zm) ——— Grl—K—1 (4

N

Un+l

Gn+tl— K —1 (@
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then ¢ is an isomorphism such that the restriction yo to U7+l satisfie
relation (4.1). ¢ and 7 are the natural injections, so

K~ Gn+1/U'n+1 ~ @/ﬁn+1 ~ K.
For the arithmetic point groups one has the relation
Plwa) = yp(o) g1 (Vo€ K).

Now consider another basis B’ of A determined by an isomorphism A’ = Ay:
Zn+l . Un+l Then we may insert a third exact row in (4.4) as follows

0—Zn+tl, __« Gatl _» K- ] (¢)
A i
Uﬂ+1 ¥ w
Xo
0—Zn+l Gntl — K -1 (¢) (4.5)
) e
X Un+l
3 x
Q—Zn+l = Grtl > K —| )

The arithmetic point groups are related by
Plwa) = ¢ (wo) 7 = yd(a) x 7.

So ¢'(wa) = ¢(«). Hence the isomorphic space-time groups G#»+! and @»+
may be obtained in (K, ¢) extensions with the same ¢.
If the metric tensor for the basis B of A is g and that for B’ of A is ¢
(4.1) requires
n+1l n+1

S pipigy S0 ifandonly if 3 piplgl S0 (46)

t,i=1 %,i=1

(any pt e Z).

Suppose grx %= 0 for all 1 < & < #» + 1. This hypothesis is not restrictive
because one can always find a basis without isotropic vectors. Then the
images in U7+ also have non-zero norm. One may suppose p»+1 % 0. By
a change of variables
pi
7= pnil

eq. (4.6) becomes

gt . qm & l‘qugﬂ + ,Zlqigi(n—%—l) + nrnmrn 20
UB1= 1=
if and only if:
F(gh -0 g &2 3 gigfgis + Zlqigi(w n+ 8ainmin 20
i

4,i=1
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for all rational ¢%. Because the quadratic forms f and /' are zero for the same
values of the rational variables they only differ by a real factor 4. As the
regions of the variables, where the forms are positive, are the same, this &
is positive. ~

So the equivalent space-time groups G**! and G#*+! determine together
with the isomorphisms A and 1 two pairs (B, $(K)) and (B, ¢(K)) respectively
such that

g(B) = kx'g(B) 1,
$K)=ypK)x Y, x€GL(n+1,2),k>0. (4.7)

Any two pairs which satisfy the relations (4.7) are called equivalent. The
equivalence class is called the relativistic arithmetic crystal class {B, $(K)}.

From the discussion above and the fact that isomorphisms 1: Z#+1 — Un+1
and 1: Znt1 — Un+1 determine the same arithmetic crystal class according
to the relations (4.3) one has:

Proposition 8:

A space-time group determines a relativistic arithmetic crystal class.
Isomorphic space-time groups determine the same relativistic arithmetic
crystal class.

To find the arithmetic crystal classes one introduces the concept of geo-
metric crystal class. Two point groups are called relativistic geometrically
equivalent if they are conjugate subgroups of O(#, 1).

Proposition 9:

If K and K are relativistic geometrically equivalent point groups, for each
space-time group with point group K one has an isomorphic space-time
group with point group K.

Proof: Suppose K = TKT-1 for some T € O(n, 1). The space-time group
@+l occurs in a (K, ¢)-extension, where ¢(K) is K with respect to a basis B.
Then there is an isomorphic (K, ¢)-extension for ¢(K) given by K with
respect to B = TB. (Note that ¢(K) = ¢(K)). Because a Lorentz transforma-
tion leaves invariant the metric tensor, the translation groups Un+1 C G+l
and Un+1 C Gn+1 have the same metric tensor with respect to basis B and B
respectively. Hence G#*1 and G#*1 are relativistic equivalent.

Proposition 10:

It is sufficient to consider the relativistic arithmetic crystal classes for
one representative of each relativistic geometric class in order to obtain
all relativistic arithmetic crystal classes.

Two lattices A and A generated by the translation subgroups Un+1 C G+l
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and Un+l C @Gn+l of two isomorphic space-time groups have bases with
respect to which the metric tensors differ only by a positive real factor.

This means that both lattices have the same holohedry ¢(H) with respect
to these bases. Therefore the concept of Bravais class does not play the same
important role here as it does in the Euclidean case.

Two lattices A and A belong to the same relativistic Bravais class if there
exists an isomorphism between the generating translation groups U=zt
and Un+1 that maps,elements of Un+1 on elements of the same kind in Un+1,
(Of course both are isomorphic to Z#+1l.) From the foregoing discussion it
follows that A and A belong to the same relativistic Bravais class if there
are bases B of 4 and B of A such that for the corresponding metric tensors
one has

§(B) = kg(B), k>0

- Hence a Bravais class may be denoted by a g(B) or by a class {B, ¢(H)}
because B determines the holohedry ¢(H). Each arithmetic crystal class
{B, $(K)} belongs to a Bravais class {B, ¢(H)} and one has ¢(K) C ¢(H).

In the same way as in the Euclidean case one defines a relativistic system,
Two lattices belong to the same relativistic system if their geometric holo-
hedries are geometrically equivalent.

Finally one has to find all non-isomorphic space-time groups obtained
from a (K, ¢)-extension and with basis B for one representative of each
arithmetic crystal class {B, ¢(K)}.

Consider two isomorphic space-time groups G#»+! and G»+l. They can
always be made to appear in the following commutative diagram

0—Znl < LGl K .1 (4B

N

x X0 '3 w
Un+l

TN

0—Zn+l = G+l — K — (¢, B)

where kg(B) = g(B). From g(B) = kytg(B) x one has y € ¢(H). Furthermore
because ¢(wa) = yd(x) x~L one also has y € Nyx). Therefore y € Ny N H(H).

(4.8)

Proposition 11:
If two space-time groups G#+! and G#*1 appear in equivalent extensions
(4.8) they are isomorphic. , '
Proof: 1f the upper and lower rows in (4.8) are equivalent one may choose
the isomorphism ¢ in such a way that x is the identity mapping. This means

§(B) = kg(B).

So Gn+1 and G#+1 are isomorphic.
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As a consequence of propositions 7 and 11 one may formulate the following
criterion to distinguish the non-isomorphic space-time groups appearing
in diagram (4.8). (We use here the same notation as in section 3.)

Proposition 12: _
Gn+l and G+ are isomorphic space-time groups if and only if there are
automorphisms € Aut K and y € Ny, N ¢(H) and elements

cloa); vons Clay) € Z7H1 ’

such that relation (3.8) is satisfied, 7.e.:

fi(g1, - 8r) +7_21ﬂi(w°‘a‘) cloy) = %8s (=1 ..7).
Proof: As a consequence of proposition 7 : if G*+1 and @7+ have isomorphic

abstract structure, one has y € N, g,. Besides, as seen above, y € ¢(H).

~ On the other hand if y € Nyg, N ¢(H) the groups G**1 and G#+1 con-

sidered in the proof of proposition 7 are not only isomorphic as abstract

groups, but even as relativistic space-time groups (Groups obtained from

equivalent extensions are isomorphic).

5. Galilean crystallographic groups

A Galilean space-time group Gn+l is a subgroup of JG(n 4+ 1) with a
translation subgroup U#tl = G7+! N T7+l which is free abelian of rank
# -+ 1 and which over R generates Tn+}. A Galilean point group K is a
subgroup of G(n+ 1) which leaves an # -+ 1-dimensional lattice invariant.
.As we are only concerned with Galilean space-time groups for which the
image in GIL(n + 1, R) coincides with the image of a Euclidean space
group, these Galilean space-time groups are affine conjugate if and only if
they have isomorphic group structure. However, in Galilean space one can
distinguish two types of vectors: space-type (¥#*1 = 0) and velocity-type
[(#7t1 5= 0). Therefore we call two Galilean space-time groups isomorphic
if there is a group isomorphism between them such that all translation ele-
ments of one group are mapped on translation elements of the same type
‘of the other one.

. Denoting by 4 the lattice generated by U#+! from a given origin and by
‘B" the hyperplane x7+1 = 0, we define

A%t AN Re

%Proposition 13:

_Ais a I-dimensional lattice for certain (0 </ < #). This is denoted by
.
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Proof:

1) A; is discrete, A being a lattice;

it) if 71, 72 € Ay, then ny7y + nare € 4; for any w1, ng € Z; consequently i
i1s a module over Z;

iii) 4; is generated by at most » basis vectors (which can be chosen g
basis vectors of A).

It is always possible to choose a basis ay, ..., ap+1 of A in such a way thay
ai, ..., a; are basis vectors of A;. This 1s called a standard basis of A. If, for
one choice of a standard basis, G®»*1 determines the arithmetic point group
¢(K), then for another choice one has

$le) = x¢() x71 (Ve K) (5.1)
where
X1 x2
X = (o m) (5.2

and yeGLn + 1,2), y1e€GL({, Z), y3€ GLin + 1 — I, Z). So a Galilean
space-time group determines on a standard basis the dimension / of E*» N /
and a ¢(K) up to conjugation by an element y (5.2).

Two pairs [$(K), ] and [¢(K), [] are equivalent if

) I=1

ii) an element y € GL(n 4 1, Z) of the form (5.2) exists, such that (5.1) is
valid.

A Galilean arithmetic crystal class is an equivalence class of pairs [¢(K), /.

Then two isomorphic Galilean space-time groups determine the same
Galilean arithmetic crystal class. On the other hand, if [¢(K), /] and [$(K), []
are in the same Galilean arithmetic crystal class, for each Galilean space-time
group G*1 in a (K, ¢)-extension, there is an isomorphic one G7+1 in a
(K, ¢)-extension.

Two point groups are in the same Galilean geometric crystal class if they
are conjugate subgroups of G(n - 1). Again (cf. proposition 10) to obtain
all Galilean arithmetic crystal classes it is sufficient to consider one re-
presentative K of each geometric crystal class. For, suppose K = TKT-!
for some T € G(n + 1) and let KA = A, then KTA =TA% 4. If Bisa
standard basis of A, and dim(R® N A) = [, then B = T B is a standard basis
of A and dim(B” N A) = [, because G(n + 1)-B» = R».

A lattice A determines an arithmetic holohedry, 1.e. the Galilean arithmetic
crystal class of the pair [¢(H), {], when H is the maximal point group leaving
A invariant. Two lattices belong to the same Galilean Bravais class if and
only if they determine the same arithmetic holohedry.

Definition: a split lattice is an # + 1-dimensional lattice for which 2
standard basis may be chosen with / = # and with a,4; along the x#+1-axis.
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Proposition 14:

In each Galilean Bravais class for which [ = dim(E? N A) = # there is a
split lattice.

Proof: As I = n one has for A4 a standard basis with ay, ..., ay € B® and
Ap+l = (7n+1, tn+1). Define

[
v z(o...o 11)>

where 7n+1 is the column vector with components x..,,...,x%,, and
9 = 7ps1ftne1. Then A8 y() A is a split lattice, because 4 admits the
standard basis:

di——:ﬂiEEn (izl,...,'ﬂ),

dnt1 = [O; tn+1]-
/A and 4 being obtained from each other by a homogeneous Galilean trans-
formation, they belong to the same Galilean Bravais class.

We have restricted ourselves here to space-time groups with a finite point
group. However, in the general case one may state the following propositions.

Proposition 15:

The holohedry of a Galilean lattice A with / = » contains a free abelian
subgroup of rank #.

Proof: Because of proposition 14 one may consider a split lattice in the
same Bravais class. Denote the Galilean geometric holohedry by H and
suppose :

V(o) = (f i’) e H. (5.3)

Then in R™ one has: RA; = ;. So, denoting the Euclidean holohedry of 4,
by %, one has R € 4. In the hyperplane 7+ = ¢{,.; one has

y()an+1 + 4] = ant1 + AL

as these are exactly the points in this hyperplane which is left invariant by a
Galilean transformation. Hence vin+1 € 4;. So H has the following elements

i) R 0 VR el
i €
0 | ( i),
Al ¢
1i) (On 7l 1n+l> if a; = [7;, #;] is a basis vector (t=1,..,n),

A ™ 0
111) (O _1)_

The elements ii) are of infinite order and generate a free abelian group of
rank #.
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Proposition 16:

The holohedry H of a Galilean lattice A with / << # has only elements ¢
finite order.

Proof: Let ay, ..., apy1 with a; = [#;, 4] and r,e B =1, ..., n) be 4
standard basis of A. Over Z the vectors ay, ..., a; generate ; = A N B%, over
R they generate the vector space R!. Choose an orthonormal basis such that
e1, ..., e generate R! and ey, ..., e, generate R%, whereas e,+1 is along the
xn+lgxis. With respect to this basis an element of the holohedry H has the
form

-

where P € O(n), such that PA; = 4;, # is a #-dimensional column vector ang
e= 41.Suppose ¢ = + 1. Consider the hyperplanet =#;(i =1+ 1, ...,n + 1).
In this hyperplane y operates as an element (P, ut;) of E(xn) and (P, ut)
leaves invariant the point sets 7; 4+ 4; and 7; + RL Either ;€ Rt or vy ¢ R,

i) If »; € R! define v; in the orthoplement R%~! of R in R” in such a way
that »; + R! = #; + R! Then (P, u#;) leaves invariant the set #; + 4; in
the hyperplane v; + Rt So # € R! and Pv; = v;.

) If ;€ R}, one has# € R! and v; = O.

So in R’i‘l the vectors vy, ..., ¥p41 are left invariant by P. These vectors
span a d-dimensional space and d = » — [, because, if 4 << » — [ the basis
vectors 4y, ..., an+1 would generate a spaceof dimension </ +d+ 1 <n- 1.
Therefore P leaves R ~* pointwise fixed. So y has the form

Pl 0 uy
y=[0 14y O
0 0 1

where P;A; = 4; and »; an /-dimensional column vector. Py, being an element
of an /-dimensional Euclidean point group, is of finite order m. Hence

wy
yr=| T 0 |;
0 1

ym leaves invariant a;41 + 4. So fi41w; €45 In the same way 40w €A
Suppose w; = 0. Then ¢41/t112 = p/q is a rational number (p, ¢ € Z) and
giiv1 — plive = 0, z.e:

qai+1 — pairs € RPN A = 4.
By hypothesis this not being the case, w; = 0 and thereforey is of finite order.
Because the elements with ¢ = 41 form a subgroup of index 1 or 2 in the

holohedry the proposition has been shown.
To obtain the Galilean arithmetic crystal classes, one takes one repre-
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sentative K of each Galilean geometric class and determines the lattices
left invariant by K. One takes one representative [¢(H), /] of each arithmetic
crystal class of the holohedries of these lattices. (We remark that if a lattice
occurs with [ = m, there exist also lattices with I =m + 1, ..., n). The
non-equivalent pairs [¢(K), J] with K C H are representatives of the Galilean
arithmetic crystal classes.

Now still remains the problem of finding all non-isomorphic Galilean space-
time groups for a given [#(K), 7]. Consider the morphism of group extensions:

0 ZmHlts GuHl 2 1 (%, 1) |
el ] (5.4)
0— ZmHL s Gntl 2, K — | tx)

and the commutative diagram

Zntl, A Untl, 1, Gntl

I

Zn+l A, Ontl, i, Gntl

Y
Il

(5.5)

4

Al
f
©, o,
Dol

If both extensions (5.4) are equivalent, y can be chosen to be the identity.
So Gnt+l and G+l are isomorphic as abstract group and the first [ basis
vectors of A corresponding to U?+1 are mapped on the first / basis vectors of
A corresponding to U#+1, So G*+1 and G7+1 are isomorphic as Galilean group.

Proposition 17:
The Galilean space-time groups G#+! and G®+! are isomorphic if and only

if there are automorphisms y € N, k) and w € Aut K (5.4) such that y is of
the form (5.2) and relation (3.8) is satisfied:

filgu, ..., &r) +121”i(w°‘!)'c(°‘f) =8 (=1 ..7.

Proof: If Gn+1 and G+ are isomorphic, there are automorphisms 4 and
w, because of proposition 7. Moreover the elements of B* N A are mapped
on elements of B* N A. This means that y is of the form (5.2).

On the other hand, if y and w exist with the required properties, then
G™+1 and Gn+1 are isomorphic as abstract groups and every element of Un+1
is mapped by ¢ on an element of the same type of U?+1 and vice versa.

So both Galilean space-time groups are isomorphic.

6. Conclusion

1In this part crystallographic groups in Euclidean, Minkowskian, Galilean
and so-called product space have been defined and equivalence relations
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between them stated. In Euclidean space two space groups are isomorphic
if they are isomorphic as groups, but because of the existence of varigyg
kinds of elements in the other vector spaces, the isomorphism then is more
complicated.

In each of the # + I-dimensional spaces mentioned a space-(time) groyp
may be obtained from an extension of a free abelian group of rank #» -+ |
by a point group K with a monomorphism ¢: K — GL(n + 1, Z). I
Euclidean space every extension of this type with K finite gives rise to 4
Euclidean space group (ref. 3, p.557). A comparable proposition is not
known for the other spaces, as there infinite point groups may occur. ([f
K is a finite crystallographic point group, imbedding theorems correspond.
ing to proposition 5 of ref. 3 may be formulated in quite the same way.)

For these reasons only those crystallographic groups are considered here
for which the injection in the inhomogeneous linear group coincides with the
injection of a generalized magnetic group. For Euclidean space this meang
that space groups are considered for which the point groups are # -+ |.
reducible over R. Relativistic and Galilean space-time groups are considered
only as far as they have finite point groups, ¢.c. in which no Lorentz or
Galilean transformations of infinite order occur.

Already for these simpler groups the classification is rather rich. The
number of Euclidean and Galilean Bravais classes is finite, but the number
of relativistic Bravais classes is infinite with the power of the continuum.
In product space the number is enumerably infinite.

The space-time groups, considered here, being isomorphic as groups to a
Euclidean space group, the abstract isomorphism classes of these space-time
groups may be determined from all non-isomorphic extensions (1.1) where X
corresponds (according to fig. 1} to a generalized magnetic point group. The
determination of non-isomorphic space groups for given ¢{K) is discussed
in ref. 11, the arithmetic crystal classes corresponding to generalized
magnetic groups are determined for the case n + | = 4 in ref. 12.
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