Space-Time Symmetry of Linearly Polarized Electromagnetic Plane Waves.

A. Janner

Institut voor Theoretische Fysica, Katholieke Universiteit - Nijmegen

E. ASCHER

Battelle Institute, Advanced Studies Center - Carouge-Genève

(ricevuto il 3 Ottobre 1969)

The symmetry in space and time of a transverse electromagnetic (TEM) plane wave with (isotropic) four-vector k is the largest subgroup G^k of the Poincaré group $IO_{3,1}$ leaving the electromagnetic-field tensor invariant.

The subgroup T^k of G^k , consisting only of translations in space and time, is a normal subgroup of G^k . The elements of T^k are called primitive translations. The factor group G^k/T^k is isomorphic to a subgroup K^k of the Lorentz group. K^k is the point group of the electromagnetic wave in question.

As the Poincaré group is the semi-direct product of the group T of all translations in space and time and the Lorentz group $O_{3,1}$, we write the elements of $G^k \subset IO_{3,1}$ as (t, L) with $t \in T$ and $L \in K^k \subset O_{3,1}$. Their multiplication rule is given by

$$(t_1,\; L_1)(t_2,\; L_2) = (t_1 + \; L_1 t_2,\; L_1 L_2) \; .$$

If $t \notin T^k$, then t can be written as

$$(1) t = a + u(L)$$

with $a \in T^k$.

The element u(L) is a nonprimitive translation associated to L. One has (1)

(2)
$$u(L_1 L_2) = u(L_1) + L_1 u(L_2) ,$$

so that it is sufficient to know the nonprimitive transitions associated to the generators of K^k . In the case of a linearly polarized TEM wave, an orthonormal

⁽¹⁾ E. ASCHER and A. JANNER: Helv. Phys. Acta, 38, 551 (1965); Comm. Math. Phys., 11, 138 (1968).

basis e_{α} ($\alpha=0,1,2,3$) can be chosen in the Minkowski space with metric tensor $g_{\alpha\beta}=e_{\alpha}\cdot e_{\beta}$ (where $-g_{00}=g_{11}=g_{22}=g_{33}=1$ and $g_{\alpha\beta}=0$ for $\alpha\neq\beta$) in such a way that the electromagnetic-field tensor is

(3)
$$F^{\alpha\beta}(x) = F^{\alpha\beta}(0) \cos kx.$$

Here $k^0 = k^2 = \omega/c = 2\pi/\lambda$, $k^1 = k^3 = 0$ and in Gaussian units

(4)
$$F^{\alpha\beta}(0) = E \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & -1 & 0 \end{pmatrix}.$$

The translation group T^k is given by

(5)
$$T^{k} = \{a = \mu e_{1} + \nu e_{3} + \varrho k + z \lambda e_{2} | \forall \mu, \nu, \varrho \in R \text{ and } z \in Z\} \simeq R^{3} \oplus Z$$

and the point group K^k is generated by

(6)
$$K^{k} = \{\overline{1}', m_{x}, m'_{y}, L(\sigma), \overline{L}(\varrho) | \forall \sigma, \varrho \in R\},$$

where m_x is the mirror perpendicular to the x-axis (along e_1), m'_y the mirror perpendicular to the y-axis (along e_2) followed by a time inversion, $L(\sigma)$ and $\overline{L}(\varrho)$ are Lorentz transformations belonging to the little group of the four-vector k (2):

$$L(\sigma) = \begin{pmatrix} 1 + \frac{1}{2}\sigma^2 & \sigma & -\frac{1}{2}\sigma^2 & 0 \\ \sigma & 1 & -\sigma & 0 \\ \frac{1}{2}\sigma^2 & \sigma & 1 - \frac{1}{2}\sigma^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \overline{L}(\varrho) = \begin{pmatrix} 1 + \frac{1}{2}\varrho^2 & 0 & -\frac{1}{2}\varrho^2 & \varrho \\ 0 & 1 & 0 & 0 \\ \frac{1}{2}\varrho^2 & 0 & 1 - \frac{1}{2}\varrho^2 & \varrho \\ \varrho & 0 & -\varrho & 1 \end{pmatrix}$$

and $\overline{\mathbf{I}}'$ is that total (space-time) inversion.

With the choice of the origin made in (3), the only nonprimitive translation, associated to the above generators of K^k , which is nonequivalent to zero, is $u(\overline{1}')$. One may choose

$$u(\overline{1}') = \frac{1}{2} \lambda e_2$$

and

(7)
$$u(m_x) = u(m_y') = u(L(\sigma)) = u(\overline{L}(\rho)) = 0.$$

Therefore G^k is a nonsymmorphic symmetry group. This means that the point group K^k is not a subgroup of G^k , or, in other words, that G^k is a nonsplit extension of T^k by K^k (1).

⁽²⁾ M. HAMERMESH: Group Theory (London, 1962), p. 494.

In the limit of $\lambda \to \infty$, i.e. of $k \to 0$, $F^{\alpha\beta}(x)$ becomes the constant $F^{\alpha\beta}(0)$, whose symmetry has already been determined (3). Comparison with K_{\perp} (see (4) of ref. (3)) shows that the only elements of $K^{k\to 0}$ not belonging to K_{\perp} are those whose nonprimitive translations are inequivalent to zero.

A more detailed account of the present work together with the corresponding results for the cases of a circularly and an elliptically polarized TEM wave will be published elsewhere.

* * *

The authors are indebted to Prof. W. Opechowski for stimulating discussions and for drawing their attention to the fact that $L(\sigma)$ and $\overline{L}(\varrho)$ are already indicated in ref. (2).

⁽³⁾ A. JANNER and E. ASCHER: to be published.