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Synopsis

An electromagnetic four-potential describing the superposition of a crystal and an
electromagnetic plane wave is shown to be invariant with respect to a four-dimensional
lattice translation group in space—time. Diffraction (in the kinematical approximation)
leaves this group unchanged and this property is equivalent with Bragg’s law.

Crystallographic groups in the Minkowskian and Galilean space—time are
special cases of relativistic symmetry groups that have been investigated by
us recently; some mathematical results have already been published?. 2,3, 4.
In this paper an example of physical systems having such symmetries is
given. _

The superposition of a plane wave and a crystal is invariant with respect
to a four-dimensional discrete space-time translation group. Using this
property, an analogue of the Bloch theorem has been derived for the case
of an electron in the presence of a crystal potential and a monochromatic
radiation field®). Here another aspect of this space-time symmetry is dis-
cussed.

It is shown that the translation group considered above is still a symmetry
group of the system even if one takes into account the possible diffraction
of the incident plane wave by the crystal (at least in the kinematical ap-
proximation). More than that, the Bragg law is equivalent to the require-
ment that the (elastic) diffraction conserves this symmetry. Actually this
lattice translation group is in general not the largest subgroup of the in-
homogeneous Lorentz group that is conserved, but in this paper the con-
siderations are restricted to translational symmetries.

The concepts are here discussed for the case of X-ray diffraction; it is
clear, however, that they equally well apply to the diffraction of free
electrons or of phonons®). If other symmetry elements, such as rotations
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and reflections, are considered, then one has to distinguish between these
varlous cases.

Let the crystal be given by an electrostatic potential V(#) invariant with
respect to a crystallographic space group G having a discrete translation
subgroup U that generates a lattice I' with basis vectors ay, a2, a3. The most
general expression for V() then is:

V(x) = % e**V(k) (1)
kel*

where I'* is the lattice generated by the reciprocal basis vectors a¥, a¥, a¥
defined by:

a;-a* = 2mdy; i k=1,23. 2)

A transverse electromagnetic wave propagating in the direction h can be
obtained from the vector potential:

A(w, ) = A ellbw=on, | (3)

where ||h|2 = (2r/3)2 = (w/c)? and A is a constant vector orthogonal to h.
Consider now the Minkowskian space—time with respect to the orthonormal
basis vectors ey, e, es, ¢4 of the inertial frame in which the crystal is at rest
and with metric tensor ¢;-¢; = gi; where g11 = gaa = ga3 = —gaa = 1. The
superposition of the crystal potential (1) with the plane wave potential (3)
gives rise to the electromagnetic four-potential

Qi(x) = (A(x), A2(x), A3(x), V()), x = (&, ct). - (4)
Note that this potential is of the form:
Gi(x) = 3 &2 Pi(R), i=1,23,4, ’ (5)
kedy* :

where A¥ is the four-dimensional lattice generated by I'* of eq. (1) and the
four-vector of the incident radiation: » = (h, w/c). Relation (5) shows that
the potential ®7(x), and hence also the electromagnetic field obtained from
the superposition of a static crystal with an electromagnetic plane wave,
are both invariant with respect to the four-dimensional discrete translation
group Ty This is the group that also leaves invariant the lattice 4, defined
(in the Minkowskian space) as the reciprocal lattice of A3.
An easy calculation shows that if the space component of 4 is:

h = hia* 4 hoa¥ + hsa¥, (6)
then the set of vectors:
b1 = (a1, M),
by = (@s, hol),
bs = (as, h3l),
ba = (0, —A),
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forms the basis of Ay that is reciprocal to {(a%, 0), (a%, 0), (a%, 0), 4}. The
Bragg condition fora diffracted ray 2’ = (h’, »’/c) in the elastic case (o’ = w)
is expressible in terms of the Laue equation (see for example ref. 7):

A —h=(h" — h,0) with h' — hel* (8)
This equation is equivalent to the condition:
K e A%, (for A% =h* = wlc). (9)

If one considers the lattice A% obtained as above from the superposition of
the given crystal potential with the diffracted wave %', or the corresponding
translation group Ty, then relation (9) is equivalent to the following ones:

Ay = Ay, or Ty = Ty (for h'4 = h4), (10)

which simply express the conservation of translational space-time symmetry
in the Bragg diffraction. T’ is therefore the translational symmetry group
of crystal diffraction. This symmetry group depends only on the crystal, on
the incident radiation and on the relative orientation of both, but not
(within the kinematical approximation) on the diffracted rays. In proving
this result we have not really made use of the Minkowskian metric. And,
in fact, one can easily show that the same result is obtained for the case of
Galilean space-time. In particular, the group 77, is exactly the same in the
Minkowskian and in the Galilean case.

The results of further investigation concerning larger space-time groups
having these same properties will be published elsewhere.
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