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Synopsis

Concepts typical for crystallographic space groups, like the group of primitive
translations (U), the point group (K) and the system of non-primitive translations
(1), are also very convenient in the more general case of arbitrary inhomogeneous
subgroups G of the Poincaré group I0(3, 1). Groups with given U and K are considered.
The role of the cohomology groups H1(K, R4/U) —where R4 is the group of all space-
time translations — and H2(K, U) is discussed. H!(K, R4/U) appears if one considers
the imbedding of G into IO(3, 1), whereas H2(K, U) occurs if one looks at G as ex-
tension of U by K. Not every such extension gives, in general, a subgroup of I0(3, 1).
The elements of HY(K, R4/U) are in one-to-one correspondence with, the classes of
subgroups G having given U and K, and only differing in their origins. If H1(K, R4) = 0
and if U generates the real vector space R4, Bieberbach’s conjugation theorem holds,
i.e. abstract isomorphisms can be realized as conjugations in the affine group A4 (4).

The important consequences of this property are considered and a number of basic
theorems proved. Several physical systems having inhomogeneous subgroups of the
Poincaré group as symmetry groups are indicated and discussed.

1. Introduction. The aim of this paper is to show how concepts defined
for crystallographic groups can naturally be extended and used for de-
scribing arbitrary inhomogeneous linear groups. This generalization is
straightforward in the euclidean case, is possible in the affine one, but will
be treated here in the relativistic (or minkowskian) case only. The reason
is that treating in such a way the inhomogeneous subgroups of the Poincaré
group is interesting from the physical point of view and not quite trivial
mathematically.

The structure of the relativistic crystallographic groups is still under
investigation. Even in the two-dimensional case (one space- and one time-
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dimension) only the homogeneous crystallographic groups have been
derived?). In the four-dimensional case the classification is so far limited
to those groups which are isomorphic to euclidean crystallographic groups2).
A lot of information is of course available in current mathematical Literature
in a more or less direct way and may be considered to be equivalent with
a knowledge of a number of relativistic crystallographic groups (see, e.g.,
refs. 3 and 4).

However, the proofs of the fundamental theorems of euclidean crystal-
lography - first established by Bieberbach in two famous papers?®) and later
investigated further by a number of authors 6-12) — are based on properties
that in the case of an indefinite metric are, in general, no longer true. Let
us only mention, as example, the so-called imbedding theorem for abstract
space groups. According to this theorem, an abstractly defined crystallo-
graphic group can always be imbedded in the group of rigid motions of a
euclidean space. In this paper a relativistic imbedding theorem is given for
a larger class of groups than the crystallographic ones.

Our interest for this larger class of subgroups of the Poincaré group has
its first justification in physics. A first research on physical systems having
symmetries in space-time and not in the 3-dimensional space only [consider
¢.g. an electromagnetic plane wave!3)] showed clearly that the frame of
crystallography (even if much richer in the relativistic than in the euclidean
case) is a too limited one. It became also clear that some crystallographic
concepts could still be used in the new symmetry groups encountered. The
presence of translations is in fact sufficient for ensuring a meaningful
generalization of the crystallographic definitions. This is discussed in section
2. Section 3 is devoted to the formulation of a number of basic theorems.
In section 4 the réle of H1(K, R#%) and of H2(K, R4 is discussed, and in the
last section some examples are given. The application of symmetry groups
of the type considered here to problems of relativistic physics will be the
subject matter of forthcoming papers.

2. Subgroups of the Poincaré group. Consider the real vector space R4
with the diagonal metric tensor g given by goo = —1, g11 = a2 = g3z = I.
We define the Lorentz group O(3,1) as group of real matrices

0@3,1) = {xe GL(4, R) |oTga = g},

where oT is the transpose of the matrix «. The inhomogeneous Lorentz group
(or Poincaré group) I0(3,1) is the semidirect product of the abelian group
of translations R4 by the group O(3,1). This latter group operates, by
definition, faithfully on R%; therefore R* is g maximal abelian subgroup of
I0(3,1) (Proposition 1, ref. 1 1). We thus have the extension

0~ R 2 10(3,1) 3 0(3,1) - 1. (2.1)
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The monomorphism # placed between parentheses denotes the injection of
a subgroup. Such monomorphisms will usually be omitted in formulas. The
epimorphism & is the canonical projection of each element onto the coset
modulo R4 to which it belongs. After the choice of g monomorphic section 7:

7 0(3,1) —-)IO(S,I), 67 = log, 1) (2.2)
the elements of 70(3, 1) may be written in a unique way as
(t, &) =t-7¢ te R4, £€0(3,1). (2.3)

Take any subgroup G of I O(3,1) and define the group of primitive trans-
latrons U by

U={acRt(s,e)eG)=RinG, (2.4)

where ¢ is the unit element of O(3,1). Define furthermore the pownt group
K as the following subgroup of 0(3,1):

K ={ae0(3,1)|(a) eC} = G/U. (2.5)

Property 1. The group U is free abelian and normal in G.
The group is free abelian because it is g subgroup of R4. It is normal
in consequence of its definition (2.4) and because R4 is normal in / 0(3,1).

Property 2. The group G is an extension of U/ by K and there exists the
following commutative diagram (morphism of extensions):
() o
0O - U - ¢ I K —
oY} b e (2.6)
0 — R¢ pus 10(3,1) s 0@3,1) - 1

This follows from property 1 and the definitions of U and K. The epi-
morphism ¢ is the restriction of ¢ to G.

Here is the place to recall several relations that were used (and partly
proven) in refs. 11 and 12, and that will be used extensively in this work.
More about the cohomology of groups may be found in the book by Mac-
Lanel4). (See also ref. 15.)

Let K be a group and consider a short exact sequence of K-modules

0-4 5B5C-o. (2.7)
The monomorphism ¢ induces monomorphisms of cochains «:
CUK, A) - C¢K, B)

and homomorphisms of cohomology groups [i+]: He(K, A) - HY(K, B). The
epimorphisms z+ and the homomorphisms [z+] have analogous meanings.
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" To (2.7) corresponds an exact sequence of cohomology groups
- BoHuk, 4) Y Bk, B) ™ Bk, ©) & Hen (K, A8 @2

The sequence starts on the left with 0 —» HO(K, A) —. The connecting
homomorphism 2« is defined in the following way: the relations

o] =[ml, []eHUK,C), [m]eHt (K, A) (2.9)

mean that there exist a cochain u e Ce(K, B) and cocycles v € Z¢(K, C),
me Z9(K, A), such that

o= 01,  meth = v (2.10)
the homomorphism 2« does not depend on particular choices of #, » and .

The mapping 8 is the coboundary homomorphism é: C¢(K, B) - Ce+1(K, B).
Here we shall be concerned with the case g = 1. Then

(0u) (o, B) = u(0) + ews(B) — u(af), «, BeK. (2.11)

If now w: K — K is a group homomorphism and 4 a K-module, then o
induces a homomorphism of cochains *: C «K, A) - CYK, 4) and a
homomorphism of cohomology groups [w*]: HY(K, A) - HY(K, A).

Finally, let G be an extension of an abelian group 4 by a group K (de-
termining a homomorphism ¢: K - Aut 4 and a cohomology class

(m] e Hg(K, A))
and let G be an extension of an abelian group 4 by a group K (determining

a homomorphism @: K - Aut 4 and a cohomology class [7] € H2(K, A)).
Then the commutative diagram

2y {» (2.12)
0O — 2]_" - G" — ]—f -~ 1 (}3’ [7,}7/]

can be completed by a homomorphism u: G - @ to form a morphism of
extensions if an only if

M(ge) a] = (vo)(2a) (2.13)
and
llm] = [v*]0%] € HE (K, A). (2.14)

Given sections 7: K -— G and 7: & —__ @, the elements of G and @ can be
written

g = <a, o, ac A, xe K
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and
§=1(4,a), ded, 4ek
respectively. Then
pla, oy = (da + u(a), va) (2.15)

and there is a one-to-one correspondence between homomorphisms u and
cochains » € CL (K, A).

Note, however, that it is always possible to choose the section 7 so as to
obtain uK = ¢ e K. Then, instead of (2.14), the stronger relation

om = v*me Z3 (K, 4) (2.16)

holds.

Let us return to the diagram (2.6) and denote the element of G as {a, a).
Let [m] e HA(K, U) denote the cohomology class determined by G. After
the choice of a monomorphic section 7, the elements of J0O(3,1) are denoted

as (¢, ).

Property 3.
M, oy = (a 4+ u(w), «), (2.17)
[L*][m] =0¢€ HZ(K, R4) (2.]8)

Relation (2.17) is a transcription of (2.15), relation (2.18) follows from
(2.14) and the fact that I 0(3,1) is a semidirect product hence [m] = 0.

The mapping u: K — R4 is called a system of non-primitive translations of
the group G.

The exact sequence (2.8) allows a relationship to be established between
the elements [m] and  of (2.17) and (2.18).

Property 4.
[m] = I«[msu] € H2(K, U), (2.19)
where
msu € LYK, R4U). (2.20)

From (2.18) follows
[m] € Ker [1+] = Im 0.

Thus there exists an element [v] € H (K, R4/U) such that
[m] = JI«[v].

By the definition of 9« this means that there is a nonzero » € CY(K, R4) and
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ave ZYK, R4 U) such that
Lo = Ou, (2.21)

st = V. (2.22)

However, [v] does not depend on particular choices of elements #, v and
m e Z2(K, U) fulfilling the above two relations. Let us recall that & in (2.21)
is the boundary homomorphism 6: C1(K, R%) —» C2(K, R%) defined by (2.11).
Thus

u(of) = u(o) + au(p) (mod U). (2.23)

This is exactly the relation that one obtains also by applying the definition
(2.17) of u to the product <0, «) <0, >.

We can formulate also the following property:

Property 5. The element e C YK, R4) is a system of non-primitive
translations of the group G in diagram (2.6) if and only if msu € Z1(K, R4/U).

Now we want to know how [m«u] e HL(K, R4/U) depends on the choice
of the origin of G. A change of origin of G is simply a conjugation in 70(3, 1}
by an element of R4, We call equivalent all systems of non-primaitive translations
that differ only by a choice of origin. By a change of origin a system of non-

primitive translations # is changed into the system u -+ dd with 4 € R4 and
thus dd € BL(K, R%):

(@, &) (w(o), ) (d, &)™ = (w(a) + d — od, o) = (u(e) + (0d)(x), ). (2.24)

A further question is that of the dependence of a system of non-primitive
translations » € C1{K, R4) on the choice of the monomorphic section 7:
0(3,1) - I10(3,1). Since H 10(3,1), RY = 0, as will be recalled in proposition
3, each change of monomorphic section corresponds to a change of origin.

Therefore systems that differ by the choice of the monomorphic section are
equivalent.

Property 6. Inequivalent systems of non-primitive translations for
groups G as in (2.6) are in one-to-one correspondence with elements [v] of the
first cohomology group H LK, R4U).

Let 4 dd be the system of non-primitive translations with respect to a
new origin. Since s+ maps BL(K, R%) onto BY(K, R4/U) we have

[70(1 + 0d)] = [gms10). (2.25)

Note that the classification of subgroups G of I0(3,1) according to their
equivalence class [m+%] of non-primitive translations is a very fine one.
According to (2.19), equivalent systems of non-primitive translations give
rise to equivalent extensions. But inequivalent systems [m+u] and [msil]
of non-primitive translations may be associated to a group G character-
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ized by a given element m e Z (K, U) (called factor set). By (2.21) we have
L = 0u = §i (2.26)
and therefore
i —u=1yeZ K, R4. (2.27)

In general v is not a coboundary and thus [z«i] = [z+u].

It may also be seen, from (2.1 9), that the equivalence class of an extension
G - characterized by a [m] € H (K, U) - may give rise to systems % and 4 of
non-primitive translations that differ in the following way:

W—u=1y -+ 8d + a, (2.28)

where y € Z1(K, R4), a € C1(K, U) and d € R4, Of course, the systems # and
% are equivalent if and only if v € BYK, R). The difference (i — ),
however, necessarily belongs to the kernel of ds. It is instructive to show
this quite explicitly.

Let us therefore characterize Ker d+ Take an element € Z1(K, R4 U)
such that [x] € Ker o« There is then an y € ZY(K, R4 such that

[#] = [mxy].
Therefore, we may choose a d € R4 such that
X = =y + Omd

or
% = me(y + 0d). (2.29)

This relation then characterizes the elements x € Z (K, R4) whose coho-
mology class [#] lies in Ker J«. It is now easy to see that m+(% — #) has the
above form,

Let us finally remark that all the above considerations are useful only if
G is an inhomogeneous subgroup of J 0(3, 1), 7.e. if it contains transformations
without fixpoint. Note that this means not U # O, but [m«u] = 0. If there
are no primitive translations, a system of non-primitive translations is a
I-cocycle: u € Z1(K, R4).

To conclude, we want to establish an important property of the subgroups
of the Poincaré group .

Proposition 1. Let G be a subgroup of I0(3, 1) such that U, defined
by U = R4 G, generates R4 as real vector space. Let ¥ be a normal
abelian subgroup of G. Then

Ve<U.

Proof. Write the elements of G as a,y withae U, ac K ~ G/U. Take
anyv = <a, > e Ve,
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Then
w = <b, e)da, o), D =<a + b —ab,a> eV
for any 6 € U, because V is normal in G. Furthermore
7wy = (—m(ot, o) — ol a, aDa + b — ab, ad<a,
=& —b+ oald oy =w,
because V' is abelian. Therefore
2b = ab + o710, vbe U. (2.30)

Consider now the scalar product 6Tgb of b with b, and take into account that
ol = gaTyg.

2bTgh = bg(ab) + bTg(gaTgh) = bTg(ab) -+ (ab)Tgh = 26Tg(ad).  (2.31)

From this we derive that, for arbitrary &, the vectors b and «b are orthogonal
to ab — &, and that the latter is a lightlike vector. Let us choose b as time-
like vector. Then this timelike vector is orthogonal to the lightlike vector
ab — b. This is impossible unless wb—b = 0.

Thus necessarily for any timelike b € U

ab = b,

According to the hypotheses U contains four linearly independent timelike
elements. Therefore, « = ¢, t.e. V < U.

Corollary. A normal, free abelian and maximal abelian subgroup
U < G is unique.

Proof. Let U and V be two such subgroups. Then from the preceding
proposition U = ¥V and also V < U, so that U = V.

Note that in spaces with index larger than one, timelike vectors may be
orthogonal to lightlike vectors. (The index of a space with a metric is the
dimension of its maximal lightlike - ¢.e. isotropic — subspaces). It can be
shown that in such spaces (2.30) does not imply o = e.

3. Imbeddings. Up to now we have considered subgroups G of I0(3,1).
Now we envisage the situation where only a subgroup U = R4 and a sub-
group K < Aut Un O(3,1) are given. In view of the preceding discussions
we construct groups in two ways from U and K, and investigate the con-
ditions under which such groups can be imbedded as subgroups into I0(3, 1).

A first way is to form the extensions of U by K. This corresponds to
choosing a 2-cocycle m e Z2(K, U), which we shall normalize by putting
m(e, &) = m(e, o) = O for any o € K. The elements of the group are the pairs

@, o0y, aelU, «ekK . (3.1)
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and the multiplication is defined as

a, ax<b, B> = <a + ab + m(a, B), af>. (3.2)
Groups given in this manner are noted
G ={U, K, m) (3.3)
We know from refs. 11 or 12 that G; = J0(3, 1) if and only if
[1+][m] = O, (3.4)

where [m] is the cohomology class of m, and [i]: H2(K, U) - H2(K, R%)
is induced by the imbedding ¢: U — R4,

A second way of constructing groups from U and K is the following: We
choose a normalized I-cochain u e CH(K, R%), 7.e. one with the property
u(e) = 0. Furthermore we require

e € ZL (K, R4U). (3.5)
Then relation (2.23) holds. We now consider the set G defined by
G2 = {[a + u(x), oa]|a e U, e K} (3.6)

and introduce a multiplication by
[a + u(e), ][0 + w(f), f] = [a + ob + w(a) + an(f), of]. (3.7)

Note that, owing to (2.23), the right-hand side has the correct form
[¢ + u(af), B]. It is now easy to verify that the set (3.5) with multiplication
(3.6) forms a group. In particular

[a + w(a), o] ! =[—ala — ol u(a), 1]
and again the right-hand side has the correct form because (2.23) implies
—o L u(a) = u(al) (mod U,).
Groups constructed in this way are noted
Gy = {U, K, u}. (3.8)
Let us choose a monomorphic section 7: O(3,1) — IO(3,1) and write the
elements of JO(3,1) asin (2.3). The mapping u: Ga —» I0(3,1) defined by
ula + (o), o] = (& + u(a), @) (3.9)

is then obviously a monomorphism. Note that in fact the group Gg is
already, by construction, a subgroup of 70(3,1). Indeed condition (3.4) is
equivalent to the existence of u € C}(K, R4) such that (3.5) holds and, vice
versa, if (3.5) holds, then [#] defined by

[m] = (7*[75*%] (3.10)
has manifestly the property (3.4).
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Since
U < G, Go/U ~ K (3.11)

the group Ggis an extension of U by K. The cohomology class of the extension
is precisely that given by (3.10). Groups G, = {U, K, #'}and G5 = {U, K, "
give rise to equivalent extensions, 4.e. to the same [m] € H2(K, U) if and
only if they are related as in (2.28):

u' —u' e Z1(K, RY). (3.12)

The properties of a subgroup G = I0(3, 1) as group of transformations
are given by its system, », of non-primitive translations. Equivalent systems
of non-primitive translations describe, up to a choice of origin, the same
group of transformations. It is therefore natural for us to identify such
groups. Inequivalent systems of non-primitive translations give rise to
different groups of transformations. After the above identification, there is
a one-to-one correspondence between the elements of HY(K, R4/U) and
groups of transformations G with a group of primitive translations U and a
point group K. The order of Ker J« gives the number of different groups
of such transformations that give rise to equivalent extensions of U by K.

If HY(K, R%) =0, as in euclidean crystallography, then J+ is a momno-

morphism, and inequivalent systems of non-primitive translations give rise
to inequivalent extensions.

We now consider a slightly more general situation.

Proposition 2. Let there be given a group G and a homomorphism 4:
4 — R4, a group B and homomorphisms »: B — 0(3,1), ¢: B — Aut A.
Consider an extension G of 4 by B with cohomology class [m]. Choose
sections?: B »—Gand7: O(3,1) -—— IO(3,1). The group G can be imbedded
by a monomorphism u: G — I0(3,1) defined as

pla, oy = (Aa + u(a), va) (3.13)
with u(e) = 0 if and only if

@) lpw) al = (va)(2a); (3.14)

(ii) [A«][m] = O; (3.15)

(ifi) 2 is a monomorphism (3.16)

(iv) Kervnul(id) = (3.17)

Proof. We know from refs. 11 and 12 that (1) and (ii) are necessary and
sufficient conditions for the existence of a homomorphism u. Consider now
{a, o> € Ker u. Then « e Ker » A 21 (A4). If u is a monomorphism, then
(ii1) follows because A is the restriction of ¢ to A. Furthermore (iv) follows.
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Conversely if (iii) and (iv) hold, then « = &, #(¢) = 0 and @ = 0. Thus u is
a monomorphism.

Thus there may exist subgroups G of the Poincaré group, having ‘“point
groups” B =~ (/4 that are not isomorphic to subgroups of the point group
of the Poincaré group (i.e. the Lorentz group). However, in these cases B
does not operate faithfully on A.

Corollary 1. Under the conditions of proposition 2

Ker» < Ker .

Proof. The proof is based on condition (3.14). Suppose « € Ker ». Then,
since 4 is a monomorphism, (pa) ¢ = a and « € Ker ¢.

The question under what circumstances ¢ and » are monomorphisms is
elucidated by the following.

Corollary 2. If 24 generates R4 as real vector space, then 4 is maximal
abelian in G.
Proof. See proposition 2, of ref. 11.

Since by proposition 1 of the same reference we know that 4 is maximal
abelian in G if and only if ¢ is a monomorphism, the question is now ans-
wered.

4. A generalized Buieberbach theorem. Bieberbach¥) has shown in the case
of n-dimensional euclidean crystallography that two isomorphic abstract
space groups can always be imbedded as conjugate subgroups into the
affine group A(n). We shall now show that the validity of a generalized
Bieberbach theorem requires the vanishing of the first cohomology group
Hl(K, Rm),

We consider the Poincaré group as subgroup of A(4).

Proposition 3. Let G and G’ be two subgroups of the Poincaré group:
G < I0(3,1) « A(4), G' = I0(3,1) = A(4) with the following properties:

(i) The normal subgroups U <« &, U’ < G’ defined by

U=R‘nG, U =RtnG (4.1)

generate R4 as real vector space.
(i) The point groups K and K’ defined by

GIU~K < 0(3,1) < GL(4, R),

G'|U =K' = 0(3,1) =« GL(4, R), (4.2)
have vanishing first cohomology groups with coefficients in R4
H(K, RY) = HYK’, RY) = 0. (4.3)

Then G and G’ are isomorphic if and only if they are conjugate in A(4).
Proof. It is clear that conjugate subgroups are isomorphic. We have.
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only to show that the isomorphic subgroups G and G’ are also conjugate,

Denote by i the isomorphism is: G — G'. Let 4 be the restriction of ¢ to U.
Then A is a monomorphism. But AU is a normal abelian subgroup of ', it
is free abelian and generates R4. Therefore, by proposition 1, AU = U’, i.c.
A is an isomorphism. Then the induced homomorphism w: K — K’ is also
and isomorphism. We thus have a morphism of extensions

0~ U - G — K — 1
1) (" {o (4.4)
0o -~ U — & — K — 1

with isomorphisms 4, ¢, .

Since U and U’ generate R4, 1 may be extended by linearity to an auto-
morphism y € GL (4, R) of the real vector space R%:

t

U — R4
A }# (4.5)
U - R4 -

4

From (4.4) we deduce .
Moa) = (wo)(2a), VaecU (4.6)
or, by extension to R4,
x(ad) = wa(yd), Vd € R4,
which can be written
wa = yay~l, VaeK < GL(4, R). (4.7)

Thus K and K’ are conjugate in GL(4, R).
Another consequence of (4.4) is

[Ae][m] = [0*][m'] € HE(K, U"), (4.8)

where [m] is the cohomology class of G and [#'] that of G'. As in (2.16) we
may, however, always choose 2-cocycles m' € [m'] such that even

Jom = w'm’ € Z2(K, U") (4.9)

holds. The fact that G and G’ are subgroups of I0(3,1) gives rise to the
relations

Li]lm] = Oe H3(K, RY),  [is][m'] = 0e H2(K', RY (4.10;
or '

Lxiy —= 3%, e’ = 0'u’. (4'11§
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Co—1(K', R4)
Ca1(K, R4 (I R4
| \Cq 1K, RY) 5
\
9K, R4) CyK', R4
oK, RY) /
Fig. 1
Now
XxOU = yxtam = 1xJam = x0*m = w*1em’ = w*6'u, (4.12)

From (4.7) we deduce the commutation relations
W' ge = yxd* o  0*¢ w1 = yudysl, - (4.13)

valid on ¢-cochains with g > 1 and corresponding to the commutative
diagram shown in fig. 1.
For ¢ = 0 we have the simpler relation

W'y = psd. (4.14)
Using (4.13) we now transform (4.12):

w8’ 01 yeu = w*d'u’,
Thus

o'l yu —u' € ZYK', RY) = BLK’, RY)
and there exists an element d € R4 such that

1+ 0*0'd = w*u’. (4.15)

For a better comparison with (4.12), we may put d = yf and use (4.12) to
transform (4.15) into

%*(u - 6]‘) = w*u’. (4.16)
Let pg = u<a, > = (a + u(e), «) define the imbedding of G into A(4)
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and
pig = p'g' = p'da, woy’
= (A2 + #'(we), wa) = (Ao + (0 ') (x), wa)
that of G' = G into A(4). Then by (4.7) and (4.15)

(@, x) ug(d, )™ = (xa + yu(e) 4 (8'd) (g™, yor~l)
= (A2 + (0"%') (o), wer) = p'g’. (4.17)

Note that in this proof we have used only H1(K’, R4) = 0, but H(K’, RY)
is isomorphic to HY(K, R4) by [w*] so that it is sufficient to suppose that one
of the two cohomology groups (4.3) vanishes. Note also that the property
that K’ be a subgroup of O(3,1) has been used in the proof through the use
of proposition 1. But then K, which is conjugate in A(4) to K', is also a
subgroup of 0(3,1).

We now want to find a natural equivalence relation allowing the identifi-
cation of a number of groups; this is the prerequisite of any reasonable
classification. In the case of space groups, Bieberbach identified isomorphic
groups, whereas, according to Frobenius 6), it was better, from the crystallo-
graphic point of view, to identify only groups that are conjugate subgroups
of the affine group. Bieberbach 5) has shown, for the case of a definite metrie,
that the two corresponding classifications coincide. We have, however, just
seen that this is not necessarily so in the relativistic case: affine conjugation
provides a finer classification than does plain isomorphism. From the
physical point of view the classification by affine conjugation is still not
fine enough, since the spacelike, timelike or lightlike character of trans-
lations is not conserved. A classification according to conjugation classes of
the Poincaré group is, however, already too fine. Indeed it is reasonable not
to distinguish groups that are related by dilatations of R4. Dilatations are
transformations that preserve parallelism. They form a group D(4) that
contains (i) the translations 7 ~ R4, and (ii) the central dilatations C, also
called homotethies or scalings. The group C is the center of GL (4, R), i.e.
consists of scalar matrices. The dilatations form a normal subgroup of the
affine group: D(4) <« A(4). Furthermore R4 < D(4) and D(4)/R4 = C.

These considerations prompt us to adopt the following definitions of
equivalence.

Definition. Two subgroups G and G’ of I0(3,1) — with translation
subgroups U = R4 N G and U’ = R4 G’ respectively, which generate R*
as real vector space — are equivalent if there is an 1somorphism ¢: G — G
whose restriction 4 to U has the following form

1=080, (eC,  x5eO0@,1). | (4.18)

The isomorphism y not only maps translations onto translations but also
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conserves the character (timelike, ...) of the translations, and the latter
property could have been used, instead of (4.18) in the definition of equi-
valence. Note also that for equivalent G and G’ the corresponding point
groups K and K’ are related by
K" = yKy1 = yoKyo L. (4.19)
In the more general case, when neither U nor U’ does generate the real
vector space R4, some precautions must be taken in the definition of equi-
valence. Firstly, it is not sufficient to ask that translations of a given
character be mapped (isomorphically) on translations of the same character,
Indeed U may be, for instance, a two-dimensional lattice generated by two
spacelike translations e; and e

U = {%161 - ngea | Ny, n9 € Z}

and U’ the set of vectors generated by the two parallel translations e; and
pe1 where p is any irrational number:

U = {%161 -+ nopey|n1, no € Z} ~ 72

Then U and U’ are isomorphic and contain only spacelike vectors and still
they represent two (geometrically and physically) different situations that
we would not like to identify.

Definition. Two subgroups G and G’ of 10(3,1) with nonzero trans-
lations groups U = R4 n G and U’ = R* n G’ respectively, are equivalent
if there is an isomorphism #: G — G', whose restriction 1 to U has the form
A = &lp with & € C and 1y the restriction of some x0€0(3,1) from R4 to U.

Secondly, if U = 0 the restriction 1 to U does not induce a conjugation
of K'in O(3.1). This is, however, what we must require for equivalent groups.
Otherwise we would be led to identify for instance the following two groups:
(i) K generated by a rotation of one radian around a given (spacelike) axis
followed by a translation along this axis, and (ii) K’ generated by a pure
Lorentz transformation (boost) in a given space direction followed by a
translation in that direction. Again this would not be desirable.

Definition. Two inhomogeneous subgroups G and G’ of I 0(3,1) con-
taining no primitive translations (U = U’ = 0) are equivalent if their
point groups (to which they are, by the way, isomorphic) are conjugate
subgroups of 0(3,1).

5. Examples. By way of illustration, a number of physical systems
having as symmetry group a inhomogeneous subgroup of the Poincaré group
are indicated and briefly discussed.

(i). The static crystal. In space-time, the group of primitive trans-
lations of a static crystal consists of discrete lattice translations combined
with continuous time translations. The point group is a crystallographic
Shubnikov group.
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(ii). The transverse electromagnetic plane wavelf) (in empty
space). Consider a TEM-wave propagating in the ez direction with wave
vector & = (2m/A)(eo + e3) (we put ¢ = 1). The group of primitive trans-
lations is generated by infinitesimal translations in the e, ex and eg + e3
directions and by a discrete translation Aes. The point group K and a system
of non-primitive translations # depend on the polarization of the TEM-
wave.

For linearly polarized waves, there are in K mirrors and continuous
Lorentz transformations. Furthermore #(K) contains an infinite number
of non-primitive translations inequivalent to zero, which can all be chosen
to amount to half a wavelength in the e3 direction.

For circulary polarized TEM-wave, continuous rotations Rg(6) by an angle

6 around the ¢ axis are associated with continous non-primitive translations
along the same axis:

w(Rs(0)) = & (04)27) e5, 0< 0 < 2=, | (5.1)

the plus sign applying, if the wave is right-hand and the minus sign if it is
left-hand circularly polarized.

(iii). The diffracting crystall?):18). The system is here a static
crystal diffracting an incident electromagnetic monochromatic wave (in the
geometrical approximation). The symmetry of such a system is a minkows-
kian crystallographic group; in fact the group of primitive translations U”
is discrete and generates a 4-dimensional lattice in space and time. The
point group is a Shubnikov group and depends on the polarization of the
incident radiation. The question whether the whole symmetry group is
simply the intersection of the symmetry group of the static crystal with
that of the incident radiation is under investigation.

(iv). Uniform electromagnetic fieldsl%) (in empty space). In
this case all translations in space and time are primitive (U = R4%); the
non-primitive translations are equivalent to zero and the symmetry group
can be presented as semi-direct product of R4 by a point group K. This
latter depends on the relative orientation and magnitude of the fields Eand
B. In all the cases K, contains discrete as well as continuous Lorentz trans-
formations. The algebras of these groups have been investigated independent-
ly by another team?20) with a view to classifying electromagnetic form
factors of elementary particles. '

(v). Normal modes in wave guides and resonant cavities2!)
(in empty space). A number of symmetry groups of TE-and TM-modes
in wave guides and cavities has been determined. One of the most interesting
features is observed in the symmetry groups of propagating modes, where
IIIrors occur in a frame of reference moving with the same relative velocity
(with respect to the laboratory system) as the propagation velocity. Some
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of these elements give rise to relativistic symmetries (so-called Lorentz
mirrors) in the laboratory system.

At the moment we are looking for other systems having symmetries in
space-time. The physical consequences of these symmetry groups are also
under investigation.

Acknowledgements. Many stimulating discussions with Dr. H.
Grimmer and Dr. T. Janssen are gratefully acknowledged, and the authors
thank the Curatoren of the Katholieke Universiteit, Nijmegen, for their
financial contribution.

REFERENCES

1) Janner, A. and Ascher, E., Physica 45 (1969) 33, 67.
2) Janssen, T., Janner, A. and Ascher, E., Physica 41 (1969) 541; 42 (1969) 41;
Janssen, T., Physica 42 (1969) 71.
Fast, G. and Janssen, T., Technical Report 6-68, Katholieke Universiteit Nij-
megen., .
3) Auslander, L. and Markus, L., Flat Lorentz 3-manifolds (Memoir 30, Amer. Math,
Soc. 1959).
4) Mennicke, J., Proc. Roy. Soc. Edinburgh, Section A LXVII, part IV (1968) 309.
5) Bieberbach, L., Math. Ann. 70 (1911) 297; 72 (1912) 400.
6) Frobenius, G., Sitzber. Preuss. Akad. Wissenschaften, Berlin, Jan.—Juni (1911)
654.
7) Zassenhaus, H., Abh. Math. Sem. Univ. Hamburg 12 (1938) 289; Comm. math.
Helv. 21 (1948) 117.
8) Burckhardt, J. J., Die Bewegungsgruppen der Kristallographie, Birkhiduser (Basel,
1947).
9) Auslander, L., Ann, Math. 71 (1960) 579; Amer. J. Math. 83 (1961) 276; Proc.
Amer. Math. Soc. 16 (1965) 1230.
10) Charlap, L. S., Ann. Math. 81 (1965) 15.
11) Ascher, E. and Janner, A., Helv. phys. Acta 38 (1965) 551.
12) Ascher, E. and Janner, A., Commun. math. Phys. 11 (1968) 138.
13) Janner, A. and Ascher, E., Lettere Nuovo Cimento I 2 (1969) 703.
14) MacLane, S., Homology, Springer (Berlin, 1963).
15) Hall, Jr. M., Ann. Math. 39 (1938) 220;
Hall, Jr. M., The theory of groups, Macmillan (New York, 1959).
) Janner, A. and Ascher, E., Helv. phys. Acta 43 (1970) 296.
) Janner, A. and Ascher, E., Physica 46 (1970) 162.
18) Tam, W. G., Physica 46 (1970) 165.
) Janner, A. and Ascher, E., Physica 48 (1970) 425.
) Bacry, H., Combe, Ph. and Richard, J. L., Nuovo Cimento 77A ( 1970) 267.
) Bieri, A. and Janner, A., Physica 50 (1970) 573.




