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Relativistic Symmetries and Lower Bounds for the Magneto-
Electric Susceptibility and the Ratio of Polarization to Magneti-
zation in a Ferromagneto-Electric Crystal

By
E. ASCHER

A definition of the relativistic symmetry of a polarized crystalline medium is proposed.
The requirement of invariance of the susceptibility under this group gives rise to relations
between the components of the tensor which then are used in the case of orthorhombic
boracite to obtain lower bounds for the magneto-electric susceptibility and for the ratio
of the spontaneous polarization to magnetization.

Ts wird eine Definition der relativistischen Symmetrie eines polarisierten Kristalles vor-
geschlagen. Die Forderung nach Invarianz des Suszeptibilititstensors unter dieser Gruppe
gibt Beziehungen zwischen den Komponenten des Tensors. Am Beispiel der orthorhombi-
schen Borazite wird gezeigt, wie man daraus untere Schranken fiur die magnetoelektrische
Suszeptibilitit und das Verhéltnis der spontanen elektrischen Polarisation zur spontanen
Magnetisierung ableiten kann.

1. Ferromagneto-Electricity

Let g(E, H, T) be the density of stored free enthalpy of a crystal. The crystal
is ferroelectric if
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and it is ferromagneto-electric if both these conditions are fulfilled. If this
is the case, then the symmetry of the crystal is necessarily also compatible with
the magneto-electric effect:
0%g
lim e
B0,H~0 0H; 0Hy
but of course the magneto-electric effect may exist in absence of ferromagneto-
electricity.

The question now arises whether there is a relation between the vectors °P
and °M, and the tensor a. The research described in this paper was motivated
by the desire to see whether this would be the case in nickel-iodine—boracite
Ni B,0;,1 (in short NIB), the crystal in which ferromagneto-electricity was
first discovered in 1966 [1].

In a general ferromagneto-electric crystal the stored free enthalpy and the
constitutive equations for the polarization Py and the magnetization M, may
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be represented in the following way:
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Notice that rationalized MKS units are used in this paper (gyuy = 1/c?).

If only terms up to second order are kept in g, we speak of linear ferromagneto-
electric crystals; if the spontaneous quantities °P; and °M; are also omitted,
we have a linear magneto-electric substance. Dzyaloshinski[2] has introduced the
constitutive equations for the latter case, O’Dell [3], however, seems to have
been the first to realize that such equations may be written most conveniently
when the antisymmetric tensors of electromagnetic field and polarization (as
encountered in special relativity) are used. If one wants — as we do here — to
explore and to exploit the possible relativistic symmetries of a polarized crystal,
this way of representing thermodynamic potentials (1) and constitutive equa-
tions (2), (3) is indispensable. (First results have been announced in [4].) We
shall use the following transcriptions:

1
g = _8—6 xocﬁad FaﬁFmS )
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The tensors F and J occurring here have the following components: Fi = E;,
Foy = ¢B,, Fyy =cB,, Fyy = ¢By and J% = ¢P;, J32 = J,, J18 = J,, J2 =J,.
The magnetizations M and J are related by M = u,J. Representing pairs of
indices by a single one (01 =1, 02 =2, 03 =3, 23 =4, 31 =15, 12 = 6),
the relativistic susceptibility tensor can be presented as a six-by-six matrix:

g \\2 [—nB 2
he (ﬁ?) ( i cb)’
in terms of the three-by-three matrices @, %, . In a linear ferromagneto-elec-
tric, they are simply related to those of equations (2) and (3). One finds
P=ut—1=—yut.
Furthermore »2, the electric susceptibility at constant B is given by
wB = —oulx

and differs from that at constant H precisely when there is a magneto-electric
effect (x 5= 0). The magneto-electric coefficient is A for our choice of variables
and is related to the usual one, &, by

A=oput.
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2. About the Lorentz Group

The subgroup K(J*f) of the Lorentz group that leaves invariant a polarization
tensor J*# plays an important role in the dertermination of the relativistic sym-
metry group of a polarized crystalline medium as it is defined here. We shall
give a simple derivation of K, sufficient for the case in which we are interested.
(For another derivation, see [5].) First, however, we must characterize various -
types of elements of the Lorentz group 0(3, 1).

This group is a semidirect product of its component CO(3, 1), connected to
the unity, with a dihedral group D, for which there is a choice of several realiza-
tions:

0(3,1) =CO(3,1) x Dy,

D, = I1’, ml’, 2’/m’, 2'/m, mm'2" .

The dotted cross is used to denote a semidirect product. The Shubnikov point
groups are finite subgroups of the group

0(3)1"' = S0(3) x D, ,
D, = 11', ml’, 2'/m’, 2’/m, mm'2’ .

This is a subgroup of the Lorentz group that leaves invariant a four-dimensional
positive-definite quadratic form. Special elements of the Lorentz group are
the boosts in a space-direction d, which we shall denote by ba(f), ba or b, where
B = vfc. They are subgroups of the abelian Lorentz group COg(1, 1) of the
(d, ct) plane. Other special elements are rotations around some space-direc-
tion d. These elements are noted ga(p), 0a or ¢ and belong to the abelian rotation
group S04(2) of the plane perpendicular to d.

However we shall need finer distinctions. Recall, therefore, that a linear
transformation in a n-dimensional vector space has n (affine) invariants I, ..., I,,
where I, is the trace and I, the determinant of the transformation. If these
transformations leave invariant n-dimensional quadratic form it may be shown
that there exist the following relations between the invariants

Iy = Iy (I, = *+1).
In the case of CO(3, 1) we have
I3 —_ Il ) I4 = 1 5

so that the two invariants I; and I, may be used to characterize the elements of
this group.
For any element of CO(3, 1), different from the identity we have either
I, =4, I, =6
or
L=20k+K), I,=22kK+1),
where
k = cosg, K = cosh y.

This is an invariant formulation of a theorem due to Wigner, for which I know
of no other reference than [6].

In the first case the elements are called parabolic (they are not diagonizable);
in the second case they are called non-parabolic. Notice that parabolic elements
have the same invariants as has the identity.
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For non-parabolic elements I; is positive, while J, may take any value. There
are two special cases of non-parabolic elements: the elliptic elements for which
we have

I =2(k + 1) 01, <4,
L=22k+1) -2, <6,
and the hyperbolic elements characterized by
L=2K+1) 4<I,
I, = 22K + 1) 6 <1,.

One sees that parabolic elements are at the limit between elliptic and hyperbolic
elements. For these three types of element

oI, — 1) — I, =0

so that (in addition to I,) they have in fact only a single invariant. Non-para-
bolic elements that are neither elliptic nor hyperbolic have

oL — 1) — I, =41 — k) (K —1)>0,

All rotations are elliptic. The converse is not true; however, any elliptic element
is conjugate in CO(3, 1) to a rotation. All boosts are hyperbolic. The converse
is not true; however, any hyperbolic element is conjugate in CO(3, 1) to a boost.

3. The Symmetry of the Polarization Tensor

We shall now investigate the relativistic symmetry K of the tensor of spon-
taneous electromagnetic polarization and limit ourselves here to the case where
the electric polarization is perpendicular to the magnetization. This occurs in
the orthorhombic phase of NIB. Defining

Pl e\ P
e =er=(2)"

and choosing a convenient orientation of the coordinate system, we find for the
spontaneous polarization tensor the following components J = alJ|, J32 = |J].
The Lorentz invariants are

O, = [J|* — APP* = |J|? (1 — a?),
Dy =J.cP=0.

If @ = 1, both invariants vanish. This case requires special consideration and
will not be dealt with here (see however [5]).

If @ > 1, then @, < 0 and there exists a Lorentz transformation which trans-
forms the magnetization to zero.

If o < 1, then @; > 0 and there exists a Lorentz transformation which trans-
forms the electric polarization to zero.

In these cases it is thus sufficient to find these “reducing” transformations and
to determine the symmetry group of P or that of J. It can easily be seen that
in both cases we may choose as reducing transformation a boost b,(8) in the
y-direction (i.e. perpendicular to both P and.J and such that P, J, and # form a
right-handed coordinate system). For the absolute value of the velocity, we
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find then
1 .
«>1: fl=—, o<l |fi=a.

The next step is to determine the symmetry K(P,) of P, and that K(J;) of J,.
The result is [5]:

K(P,) = [CO,(1, 1) X SO,2)] x Dy,
D, = m,l’, m,1’, mem,2;, mym,2; ,
and
D, = 2,/m’, 2;/m’, mym,2;, my2,m, .
Notice that the intersection of these two groups is a finite group of order four:
K(P,) n K(J,) = mymy2, .

The relativistic symmetry group K | of perpendicular polarization and magneti-
zation is much larger. We find it as follows.

Let « > 1. The by(1/a) annihilates the magnetization. The remaining elec-
tric polarization is left invariant by K(P;). Then b;}(1/a) restores the magneti-
zation. Therefore the symmetry in this case is

1 1
K> =07 (3K by ]
or more explicitly

1
K (0> 1) = [Ty (0,4) X Layles )] | me 1% )

Here
L

a

Ly, (a, ) = by—l( )002(1, 1) b, (%L—)c CO(2, 1)

is an abelian group of hyperbolic transformations and

1 1

an abelian group of elliptic transformations. Furthermore

1\ ., 1 o f 1 , 2a ,
s )= () o ) e

b;lmxby - ma; .

and

Similarly one finds, for a < 1, the direct product of a hyperbolic abelian sub-
group of CO,,(2, 1) and an elliptic abelian subgroup of CO,(2, 1):

K| (e <1) =b;Ya) Ke(Js) byla) ,
K, (o < 1) = [Lyyla, B) X Lyla, ) ] [mg = 'by(a)] -

Note that mym;2; is contained in both K (¢ > 1) and K (& < 1).
In the exceptional case & = 1 we would find the direct product of two para-
bolic abelian subgroups of respectively COg (2, 1) and COy(2, 1).
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4. The Role of the Normalizer in the Determination
of the Relativistic Symmetry of a Crystal

Before explaining how to determine the relativistic symmetry of a crystal,
let us dwell at some length on a simple illustration, which sheds light on the
method that will be used.

Let us take a rectangle in the plane, say perpendicular to the z-axis. The
elements that leave the rectangle invariant are easily found; they form the
group

G = 2m,m, = {1, 2,, myz, m,} ¢ O42).

Notice that there is another rectangle of the same size that has the same sym-
metry group (Fig. 1). Now we want to know the elements of O(3) that leave
the rectangle invariant. By inspection we find the group

G’ = mym,m, = {1, 2,, 24, 2,. I, my, m,, m,} ¢ O(3).

But suppose now that we have no intuition of 3-dimensional space, so that we
would not have found the group G’ by inspection. How could we proceed to
find nevertheless the three-dimensional symmetry of our two-dimensional
figure ?
Consider the normalizer
N: = {a e O3)|aGat = G}

of the original symmetry G in the larger group of transformations O(3); it is
the subgroup of elements of O(3) that leave the group G globally (i.e. not neces-
sarily elementwise) invariant; it is, so to speak, the symmetry of the symmetry.
This group is easily found to be N = 4,/mmm. Now a symmetry of the symme-
try may play an important role, but it is not necessarily a symmetry of the ob-
ject. Assymmetry of the rectangle the normalizer is certainly too large a group,
because it contains transformations of the plane that do not leave the rectangle
invariant. If we consider the subgroups of the normalizer (Fig. 2), we see that
these elements are contained in the subgroup 4mm of the normalizer. We cer-
tainly have to take as three-dimensional symmetry G’ of our object only a sub-
group of the normalizer, and exactly a subgroup such that the elements of 0,(2)
that it contains form the original symmetry G = 2,m,m,:

G ¢ N,G n0,2) =G.

Such a group is not necessarily uniquely determined. In our example we find
two groups satisfying this condition, viz.: mym,m, and 4,m,2,. The first one,

y Fig. 1. Rectangles and axes of the plane
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as we know, is the three-dimensional symmetry of our two-dimensional object.
This can be easily seen by inspection, in Fig. 2, of the lattice of subgroups of
4,/mmm. There subgroups of 0,(2) have been underlined. They form of course
a sublattice.

Let us try to learn something from the indeterminacy that we have found
here. Let us first ask ourselves which three-dimensional objects have the above-
mentioned groups as symmetry groups. The first group, mmm, describes a rect-
angular bipyramid, the second one 4m2 is the symmetry group of an object form-
ed of a rectangular prism or pyramid in the upper half-space and another rect-
angular prism or pyramid in the lower half-space, the lower being turned by =/2
degrees with respect to the upper. Let us now transpose these findings to the
situation that we shall consider later and take the pair-three-space and space-
time instead of the pair two-space and three-space. We arrive at the following
interpretation. The first group would describe an object that does not undergo
any change at the time of observation ¢{ = 0. The second group describes an
object that does undergo a drastic change at the time ¢ = 0. In our example it
turns by 7/2 degrees. This change corresponds for instance to the switching from
one of the twinsin a crystal to the other. Xxcept for this switching, the behaviour
in the future and in the past of both objects is the same.

Let us remark that we would have found the same type of result starting with
any regular n-gone in the plane. Only for n = oo, i.e. for the circle do, the two
kinds of behaviour in the added dimension disappear.

A second question is: why do we find two symmetries. The reason for this
is obviously the fact that the rectangle in the plane is not uniquely determined
by its symmetry; there are two rectangles of the same size having the same
symmetry. The symmetry here is an incomplete description of the rectangle;
it represents incomplete knowledge. Some information is missing; initial condi-
tions or something else.

Since we are interested in polarized crystals, let this additional information be:
the rectangle is electrically polarized in the positive z-direction. As is easily

by Immm

Fig. 2. Lattice of subgroups of 4,/mmm, underlined: subgroups of 04(2)
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seen, its plane symmetry is now reduced to the group (x = m, C O,(2), whereas
the symmetry with respect to O(3) is G' = 2,mym, C O(3). Notice that the
orientation is not the same as that of the group 2mm encountered previously.
Let us now again proceed via the normalizer. The normalizer of m, in 0(3) is
N: = N[m, ¢ 0(3)] = ocoy/mmm ¢ O(3). But now we must take the polariza-
tion into account. Therefore we have to intersect the normalizer with the group
of symmetry K(P) in O(3) of the polarization. In this intersection we shall find
the three-dimensional symmetry G’ of the polarized rectangle:

G'cNnK(P),G n0,2)=0G.

The symmetry of the polarization is K(P) = oo, mm ¢ O(3) and the intersection
with the normalizer is
0oy/mmm N co; Mm = 2,m,m, .

But this is already the three-dimensional symmetry G’ we are looking for,
Thus the answer is unique because the object was uniquely determined by the
supplementary prescription that the rectangle be polarized in the z-direction;
rectangle turned by 7/2 would indeed be polarized in the y-direction and there-
fore excluded. This corresponds to the well-known fact that an applied field
may be used to select one from among the possible domains of a ferro-electric
crystal. Therefore now the switching -- which we have found previously — from
one domain to the other cannot take place. Notice that the circumstance of the
intersection giving already the symmetry is not a generic property but pertains
specifically to this example. The following, however, is a generic consequence of
the procedure of finding the symmetry group G’ in higher dimensions as a sub-
group of the normalizer of its symmetry group G in lower dimensions: the latter
will always be a normal subgroup of the former.

We are now prepared to approach the determination of the relativistic sym-
metry group of a polarized crystal. We are given the Shubnikov point group G
of a polarized crystal G ¢ O(3)l’. We shall determine its normalizer in the
Lorentz-group N: = N[G ¢ O(3, 1)], intersect it with the relativistic group of
the polarization K(P*#) and find the relativistic symmetry G’ of the polarized
crystal as a subgroup of this intersection fulfilling the condition

G'¢cNnK(P#H, G N0B)L =G.

5. The Structure of the Normalizer

Let us now investigate the structure of the normalizer of a Shubnikov poin
group in the Lorentz group.

First, recall that we have to distinguish four kinds of vector with respect to
O(3)1'. Indeed consider the dihedral group of order four generated by the opera-
tions of space-inversion 1 and time-reversal 1’. Corresponding to the four irredu-
cible representations of that group, one finds four types of vector, as shown in
Table 1, which we call s-type, t-type, r-type and v-type vectors.

The following proposition can be easily proved.

Proposition: Let N be the normalizer of a Shubnikov point group G in O(3, 1)
and let Ns be the normalizer of the same group in O(3) 1': Ns = N n O(3) 1.
Then N == Ns if and only if the group G leaves a non-zero vector of type v in-
variant.

In consequence we have the following classification; the notations are the
same as in the preceding proposition.
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Table 1

With respect to O(3)1’ there are four types
of vector:

11/ 1 1 1’ 1

Ty | 1 1 11 M,
Ty | 1 1 —1 —1 ] ¢ M;
., | 1 -1 1 -1 o P
Iy | 1 =1 =1 1| v 4

Classification: 1f G leaves no non-zero velocity invariant, then
N = Ns.

If the non-zero velocities left invariant by G are parallel to a single direction,
say ¥, then

N = CO,(1, 1) x N&.
If the non-zero velocities left invariant by G may lie in a plane, say the az-plane,
then

N = 04,(2,1) X m,.
If finally the non-zero velocities left invariant by G may point in any direction
then

N =0(31).

Tn Table 2 are listed the normalizers N* and N for the 31 Shubnikov groups that
leave & non-zero vector of type v invariant.

Table 2
Normalizers N5 and N of Shubnikov groups leaving v-type vectors invariant

G Ns N
mm’2’ 2/mmm1’ | CO(1,1)%x 2/mmml” = O(1,1) X 2mm
9mm, 22’2/, m’'mm, 4’'m2’, 4/m’mm 4/mmml’ |CO(1,1)x 4/mmml’ = O(1,1) X 4mm
3m, 32/, 3'm, 6'm2’ ‘I 8/mmml’ |CO(1,1)x 6/mmml’ = O(L,1) X 6mm
4mm, 42’2’ 8/mmml’ |CO(L,1)x 8/mmml’ = O(1,1) X 8mm
6mm, 622/, 6/m’mm 12/mmml’ | CO(1,1)x12/mmml’ = O(L1) X 12mm
2,4,3,6,m’,2/m’, 4, 4/m’, 3,8, 6/m’| co/mmml’ CO(1,1)xco/mmml’ = O(1,1) X O(2)
m, 2/, 2//m co/mmml’ | O(2,1)xm |
| o(3)1’ 0(3,1)

6. Application to Ferromagneto-Electric Boracite

Let us now return to our original motivation. Let us use the relativistic sym-
metry to find relations between the elements of the permeability tensor and those
of the tensor of spontaneous polarization. We shall do this only for the case of
orthorhombic NIB.

The crystal is ferromagneto-electric. If we choose the coordinate axes so as
to have the spontaneous electric polarization P in the z-direction and the spon-

44 physica (b) 65/2
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taneous magnetization J in the x-direction, then the invariant velocity points in
the y-direction: Jg, vy, P,. The symmetry, then, is given by the Shubnikov group

G = mym,2, = {1, my, my, 2;} .
The normalizer of G in O(3, 1) is
N = CO,(1, 1) x mmm1’.

Unfortunately, there are no reliable data on the magnitude of the spontaneous
electric polarization and magnetization in NIB. Taking, however, approximate
data obtained from various samples, one finds

c|P|

a=——=~200>1.
7 >

Thus the symmetry of the tensor J*# of spontaneous polarization is
K(J*), = K (a > 1) = [Ly(a, B) X Lyla, B)] x [ms X 1'bj(0)] .
The intersection of the normalizer with the group of the spontaneous polariza-
tion is ‘
N nK = 1b(a) X mm’2’ .
This intersection does not contain any other elements of O(3) 1’ than those of

the original symmetry group mm’2’. Therefore it is the relativistic symmetry
group of the polarized crystal:

G" = 1'by(a) X mm'2’ .
Remember now

In our case

2a 2
—=2x10"2,
a

a4+ 1"

i.e. the velocity corresponding to the boost is about a fiftieth of the velocity of
light.

We now require that the permeability tensor y*#°% be invariant under the rela-
tivistic symmetry group G'.

Taking into account the Shubnikov symmetry m,m,2;, the susceptibility

tensor
=)
o Ao

has the following form:

( 2
*13 ]
g —— 0 0
sz
%B — O -—%22 O ,
’ 2
X3y
O O %33 _—
y /‘11J
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— &= 0 0 o
M1 00 =
om Ha3
9= 0 —%2 0 , 2=10 0 0O
Moz x
: 20 0
o 0 %
tiss (H11

Thus to implement the invariance with respect to G’, we have to require only the
invariance with respect to

(__0'2'4—1 0 2a
a2 — 1 a® —1
1'b2(—1—)= 0 1 0 0
a 2a 0 a* 4+ 1 0
a* + 1 a? — 1
L 0 0 0 1J

The resulting two conditions are:
a(pgy — #f1) = (a® + 1) A3,

algy — %%?3) = —(a® + 1) )-31 p

or
2
5 a® +1
&3 — 13 == ¥y + Kz + %u¥ss
2
a® +1
2 "
a3+ g = Mgy + Yu1 T ¥a3X1 -

Using now the well known thermodynamic upper bounds for a [7], [8]:

2 2
) %y1¥ss > X135 Hag¥11 > 651 5
we obtain
a? + 1
— X33 0 > %1+ Xss
a? +1
Kgy p > g + Y11

This shows:
o3 < 0, &3 > 0.

Finally the inequalities limiting the possible values of a may be cast in the
following form:

(%119(33)1/2 > [oqs] > ‘C'Lz—%_‘_—i (211 + Xas) »

a
(regym )% > o¥qn > 2+ 1 (%33 + 211) -

44>
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These relations imply also lower bounds of the ratio ¢ in terms of the electric
and the magnetic susceptibility, namely:

a* 4+ 1 %11 + Xs3 a? 4+ 1 %3 + Y
a (%11%(a3) 1z’ a ("337{11)1/ 2

We have thus shown that our definition of relativistic symmetry of a polarized
crystalline medium enables lower bounds to be deduced for the material coeffi-
cients o and a.
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