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Thom’s theorem has been described, in some of the more unrestrained accounts, as defining all discontinuous
changes that can ever occur in spacetime. This has obscured the ways in which the techniques behind the
theorem improve the cutting edge of the most traditional calculation methods of science. The same techniques
lead, as this article illustrates from the authors’ research, to analyses of phenomena not on the famous list of
‘seven elementary catastrophes’ but arising naturally in fields as diverse as crystal phase transitions, nonlinear

elasticity, and population distribution.

Much of the controversy surround-
ing catastrophe theory stems from the
claim that it provides a ‘universal set of
models for discontinuous phenomena’.
This claim needs severe qualifications
to be tenable, and has appeared
doubtfully useful to the scientist deal-
ing with particular phenomena. The
resulting debate, often revolving
around whether “That is a cusp
catastrophe!!” represents information
or not, has somewhat obscured the
ways in which the cluster of results
known as Thom's Theorem can refine
the usual computational equipment of
the sciences. (We discuss and illustrate
some of these ways below.) Moreover,
the ‘physical examples’ offered by
mathematicians have often been 19th
century physics, as that is all the

physics in the usual mathematical
education. Since significani
applications of new mathematics

comes only from i1s use on current
prablems, its utility appears only slowly
unless (like the Dirac &-function) it is
invented by a nonmathematician. But
since catastrophe theory involves a
sharpening of some very traditional
tools, it should bhe useful wherever
these are used.

A physical audience often greets
catastrophe theory with essentially the
reply,

“This is just Taylor series.

We know about Taylor series.”

Yes and no; catastrophe theory and the
surrounding mathematics consist fairly
exactly of what mathematicians have
learned about Taylor expansions in the
last decade or so.

First, mathematical attention has
shified from (infinite} Taylor series 1o
(finite} Taylor expansions to order k.
This is appropriate to their practical
uses, which usually involve the calcula-
tion of a finite number of terms. Such
calculations are often prefaced by the
hypothesis that the function, f. in-
volved is analytic. This hypothesis
depends on strong assumptions: that
the infinite Taylor series of f converges,
and that the result coincides with (. In-
deed, any power series, convergent or
pathological. can occur as a Taylor
series, while even a convergent series
mayv not be a good description of f.
(The function f{x) = exp{-1/x2), for x#0.
fio) = 0, is infinitely differentiable and
bas an absolute minimum at 0. Ilts
Taylor series at 0 vanishes identically.}
But even these strong assumptions are

not sufficient (Box 1 to justify even
qualitativelv the use of only a finite
number of terms,

Nor in fact are thev necessary.

Box 2 illustrates in a famifiar context
the idea of ‘determinacy’: for real
functions of one real variable, the
‘local shape' is always tixed by the tirs:
nonconstant term in the Tavlor expan-
sion. For functions of two or more
variables this is false n general, as in
Box 1. But for 'almost every’ smooth
function f{x,...x,). in a strong sense,
the local form of f is determined up to
a smooth change of variables by us
Taylar expansion i*{ at 0 to arder k, for
some finite k; f is k-determinate at 0.

The determinacy of a particular §
may be settled by appeal to a theorem
of Mather, whose use requires only
elementary linear algebra. A detailed
account with worked examples. and
without the language of ‘ideals in the
ring of germs at 0 of C* functions’
necessary for a proof, may be tound in
i1}

The results may be unexpecied:
fix.y) = xt+ vh+ iy

is 3-determinate and reducible 1o the
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have respectively no solutions for v > 0 and none for y # 0 (Fig. Ib,Ic). All
of f, g and h are analytic, and agree to order 100: we could as easily have
made it 10", No number of terms agreeing with f will guarantee that an
analvtic function looks like f and not g or h.
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FIGURE 1. The graphs of three quite different functions whose Taylor series are identical to 100 terms.

BOX 1

local form u® + v3, as one might guess,
but
BlX,y) = (x+y)? + x* +y?

is only 4-determinate. Any Sth-order
addition can be removed locally by a
smoath change of coordinates. but
{unlike g) the function g(x.y) + 4y* has
no negative values for (x,y) near the
origin,

These determinacy rules establish
just how far one need go in a Taylor
expansion when seeking certain kinds
of information. They are of practical
use in dealing with particular ‘real
world’ functions, and should be in-
cluded routinely in Applied
Mathematics courses. They are also
completely algorithmic (although of
course laborious in complicated cases)
and could be included in any standard
software package that handles sym-
bolic differentiation.

UNFOLDINGS

Whenever a function f(x,,....x,) is k-
determinate at 0, it has a finite-

dimensional universal unfolding, which
describes the effect of any small per-
turbation whatever on its geometry.
For

fix.y) = x2 + y2,

no small perturbation changes the
property of having a simple minimum,
When f is locally reducible by the
determinacy rules to

x4y,
the effects of all possible small pertur-
bations are described by the cusp
catastrophe, here taking the form
xt+y*+ayl+ by,

whose geometry is analyzed in [2] and
elsewhere. This example shows the way
in which a universal unfolding not only
classifies the nearby functions but also
gives the geometry of the way the un-
foldings surround f and depend on the
‘unfolding variables’ a and b. This find-
ing has applications to civil engineer-
ing (where it yields exact values for ex-
ponents known as ‘imperfection sen-
sitivities), to wave propagation (where

it yields relations on intensities at
caustics, needed, for example, for
calculation of sonar transmission
losses). and so forth. The theorems es-
tablishing the universality of these
families of perturbations are deep, cap-
turing the effect of all small pertur-
bations of the function near the point
of interest, not merely “almaost all’. But
the calculations required in particular
cases are a simple extension of those
for determinacy. They are described in
the same elementary (though cumber-
some} language in {1].

THE SEVEN ELEMENTARY
CATASTROPHES

One often reads that the seven uni-
versal unfolding geometries with up to
four unfolding variables provide a uni-
versal set of models. This is true as
stated and proved in the mathematical
treatments aof the theory’! but false as
expressed in manv popularized ac-
counts. First, not all discontinuous
processes can be reduced to the bifur-
cation of a single real-valued function,
such as phase intensity, entropy or a
Liapunor function. Thus the theory
may not apply. Secondly, when it does
apply. the theory says only that these
models cover almost alf bifurcations, in
a topological and partly measured
theoretic sense. The precise statement
is intuitive only 1o a topologist, but its
strengths and limitations are displaved
by the analogous way that almast all
curves in {x.v.zj-space fail 1o meet the
x-axis, while those that do may easily
be perturbed off it. Indeed, the result
is obtained from exactly this kind of
geometric faci, (For a formal treatment
see [3]: for a pictorial account of the
way one leads to the other see [4].) But
what if the situation has an essential
symmetry? Curves symmetric under

{x.y.zi = {xy,-2)
are restricted to the (x.y) plane, and it
is far from typical that they should miss
the x-axis. Subject to the symmetry
condition, they can do so stably.

In strict analogy, the family

fafx) = x¥ + ax?
provides a universal unfolding of x*
within the restricted class of even func-
tions (Figure 3). Subject 1o this
symmetry condition. it can occur



If a function {{x) has the {orm
fix) =c+ x + raAx).

where r:(x) has zero slope at 0, [ is increasing near 0 (Fig. 2a). If
fx) =c+x* +n(x)

where the first and second derivatives of ry vanish at 0. f has a minimum at
0 (Fig. 2b). And so on. Simple analysis shows that for any

fix) =c+ &" + ra(X)

with the first n derivatives of r..; vanishing at 0, there is a smooth change of
coordinates ¥(x} near 0 giving f the form ¢ + y* exactly. The degree of
*smoothness’ of the change from x to y depends on how many times { is con-
tinuously differentiable after the n™ derivative. but the removal of the
‘Taylor tail,' r.... does not require that [ be analvtic. The analogous recent
results for f(x,.....x,) are discussed in the main text.
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FIGURE 2. Graphs ‘determined’ around by finite Taylar expansions,

BOX 2

Almost all 2-parameter families {.(X.y.2) of functions invariant under a
90° turn about the z-axis can be reduced locally to one of the following
torms by a smooth change of coordinates.

(X +_v:l +272 +az

rx‘+ty)Es var +br

(x* - 6x°y + v') +alx’ +v) 27+ alx’ + v). some a®t].
XVl ) T alx’ F )+ bixT + V), some a0,
X+ vz £ 2+ ax’yv] + a7z’ + bz, some a0

(Each of the last three is an infinite family of possibilities, parameterized by
the number a. For the way in which such infinite tamilies arise. see [4].

Any family not so reducible can be made so by an arbitrarily small pertur-
bation. This does not mean that it is physically impossible. but suggests that
# physical justification for its specialness is called for if it is used for exact
calculations.

Analogous lists apply for the other 31 crystallographic point groups.

I

BOX 3

FIGURE
around x*,
FIGURE 3b. Bilurcation diagram around x*, univer-
sal for perturbations that maintain the symmetry
x = -x. {Note that x*-x* has this symmetry. though
its minima individually have not )

biturcation  diagrant:

la. “Universal’

stably, though in the general setting a
one-parameter family of functions can-
not stably meet functions locally ex-
pressible as x*. (And the "typical’ one-
parameter family is stable and does
avoid such points; for a detailed pic-
torial explanation, see [4].

Other types of restriction can
stablize behaviors that in the general
space of functions are ‘untypical” and
unstable, but symmetries are probably
the most important types in physics.
Within any restricted class the general
problem of identifying the typical
phenomena is again of interest. For
real-valued functions invariant under
finite or compact groups, analogues to
the key theorems of the unsymmetric
case have been proved. We are apply-
ing these analogues to the classification
of the generic bifurcations of real-
valued functions f(xy.z), subject to
symmetry under each of the 32
crystallographic point groups (Box 3).
These analogues described the typical
geometries of changes in type of ther-
modynamic potentials invariant under
each group, under external variation of
such quantities as temperature and
pressure. (The physics of the cor-
responding phase transitions, of
course, depends also on an analysis of
such factors as the effects of fluc-
tuations.) The analogues also describe
canonical local changes in type for the



branches of a dispersion relation,
vielding information about the
singularity structure of the vibrational
or electronic spectrum of crystals with
the specified symmetry.

In these bifurcations the symmetry
involved is retained by the set of ex-
trema, as in Figure 3b, though not by
its members. However, if symmetry is
imposed by design and not by nature,
the designer is attempting a highly
special. ‘nongeneric’ system. (Sihe
must consider asymmetric pertur-
bations of what is achieved. For exam-
ple, the symmetries of the buckling
plate described by the von Karmin
equation force bifurcation at a double
eigenvalue 10 be governed by one of
the eight-dimensional Double Cusp
catastrophes. (These are common for
just this kind of reason.) We are work-
ing with Robert Magnus of Battelle-
Geneva on a full description of this
buckling structure. Qur wark involves
a fruitful synthesis of the infinite-
dimensional techniques of the func-
tional analysts’ version of bifurcation
theory, which has traditionally
restricted attention to one-parameter
families of operators, with Thom's con-
cept of the k-parameter universal un-
folding of a function f(x,.....x,), which
was first defined in finite dimensions.
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Ur. . Ascher (lefti joined Battelle-Geneva in 1955
after receiving his Ph.D. irom the University in
Lausanne. His work includes studies in math-
ematical crystallography, the phenomenological
theory of phase transitions and the relation
berween symmeiries and properties of physical
systems. He now i using catastiaphe theory for
the understanding of symmety breaking, He also
is studving the prablems of mathematical mode |-

g in the social sciences (see Research Futures,
1974/ 3 and works with fean Praget on these
aspects in relation to epistemolowy. He was pros
dent ot the Swiss Crvstallographic Socrety (1973-
1975} and now is a member of the senate of the
Swiss Academy of Scienges,

Dr, Tim Postan received his Ph.D. in Mathematics
tram the University of Warwick (England) o 197
and taught in Rio de Janeiro, Rochester iNY) and
Dporto betore joining Banelle-Geneva in
«ehruary 1975 He has worked on the coordinate-
free formulation of finite difterence equations the
geometty of crvstal spectrum computations. and
catastrophe theory. His publications includs a
volume of Springer Lecture Notes in Mathematics
iwith AER. Woodcock) on the geometry of the
elementary catastrophes, and J geometry and
relativity textbook with C.T | Dodsont 10 appear
in Spong 1977, besides the notes on catasirophse
theory discussed o this arncle.

CONSTRAINT CATASTROPHES

Recent work with Professor Colin
Renfrew of Southampton University
has shown thar the simplest reasonable
assumptions on the utility functions in-
volved generate a model which
predicts discontinuous changes of pop-
ulation distribution in early agricultural
communities (Figure 4). A detailed
report is in preparation, but a point of
independent interest is the transition
between Ug and Uy. Since \ is con-
strainted to exceed a value ;.

{representing the most evenly
scattered population), a local
minimum for Ug at 4, can
become for Uy a maximum at
Vmin and a minimum at V.. This
phenomenon does not appear
on Thom's list, since Thom's
hypotheses involve interior

a 8 v 6 ¢&

Ue

y bifurcations only, but in the
presence of positivity con-
straints (such as are universal
in the social sciences) it can
occur stably. Only this and
Thom's fold catastrophe, in
fact. can occur stably in a max-
imization problem in n

FIGURE 4. Ltocal maxima solidi and minmma (datted) o 1otal
or differem
values of an agricultural parameter a, Graphs of representative

utilite Ligivi as a function of correlation distance ©

La's are also shown,

Weakening the hypotheses of the model adds “catastrophes”

rather than removes them.

dimensions for a system with
one varying para-
meter if no special conditions
(linearity, symmetry, elc.) are
imposed. It is the simplest of
the constraint catastrophes,
These are distinct from Thom's

external

magnificent seven, but can be classi-
fied, analyzed and used com-
putationally by similar techniques: the
classification becomes technically in-
finite with four external paramerers,
rather than six as in Thom's Theorem.

CONCLUDING REMARKS

Catastrophe theory, like the calculus
of which it is a part, will in the course
of time become part of the routine
mathematics of science. It is easy to
misuse its theorems, like those of
statistics, if rheir hypotheses are not
understood. (We might cite the
widespread use of computer-packaged
regression analysis with data that is not
a priori even unimodally, let alone nor-
mally, distributed.) Suffice it to say that
all mathematics is something like a
chisel. When it is used as a hammer,
the results are usually remarkable and
occasionally faral.
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