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Abstract. The subgroups that arise in phase transitions from a high-symmetry phase are
characterized as those subgroups that are maximal with respect to the property of acting
trivially on a given non-zero subspace U; of the representation space M; of a given irreducible
representation T; of H. In the case of subgroups of finite index the problem is reduced to
that of studying faithful irreducible representations of finite groups. The use of permutation
representations considerably simplifies the theory. Tables of the equitranslation epikernels
of the space groups are given.

1. Introduction

In the previous paper (Ascher and Kobayashi 1977), we used permutation representa-
tions to solve the ‘inverse Landau problem’, namely to find, for a phase transition
between two phases of symmetries H and L < H, the irreducible representation T; of
H that (according to Landau’s theory) determines the transition. The group G determined
by the transition is G = H/K, where K is the core of L (the kernel of the permutation
representation of H on the co-sets of L in H). In all examples considered, we found the
following: (i) G is a finite group that has one faithful irreducible representation t;; the
representation T; determined by the transition is then given by T; = 7,On where 7 18
the canonical epimorphism H — G; and (i) L is maximal with respect to the property
that it acts trivially on some non-zero subspace of the representation space M; of T;
(and 7). :

Since permutation representations arise in such a natural way and so conspicuously
simplify the solution of the inverse Landau problem, we shall base our group theoretic
solution of the first part of the Landau problem on these representations. We shall
indicate a procedure permitting us to find, for a given phase with symmetry group H,
the possible phases with symmetries L < H. In this paper we limit ourselves to the case
of subgroups L of finite index nin H.

The number of substructures (i.e. domains and/or sublattices) of symmetry L arising
in such a transition is then n, so that there is a one-to-one correspondence between
substructures and co-sets of L in H (Ascher 197 1). Two of the interesting properties
of permutation representations of a group on the co-sets of a subgroup is (i) that it is
transitive, and (ii) that any transitive permutation representation of a group on a set of
elements is isomorphic (as permutation representation) to the representation on the
co-sets of the subgroup fixing one element of the set. Thus the permutation representations
on the co-sets of L is, up to isomorphism, the representation that is transitive on the
substructures arising from the transition.

1365



1366 Edgar Ascher

2. Permutation representations

Let H be a (not necessarily finite) group and L a subgroup of finite index n:

L<H H:L =:n< . (1)
Consider the decomposition into co-sets
i=1
Then

defines a permutation of co-sets (which does not depend on the choice of co-set rep-
resentatives r;) and hence a permutation representation 7y :

. H - S, 4
Let K be the kernel of this representation (also called the core of L):

K:= Ker 7, K <H, K< L <H. (5
The group S, is finite and the image Imn, of H by r, is a subgroup of S,. Furthermore

Imt;, ~ H/K =:G. (6)

Hence the index m of K in H is finite. Now, for any homomorphism T :H — H ', there is
a unique monomorphism t: H/Ker T >— H’ such that

T = 10mn,

where n:H—» H/Ker T, the projection onto the quotient group. We therefore are in the
position to establish the following diagram (in the category of groups):

< Q

—L GL(M) ~ GL(n, O). )

7y
Ty a
Y

S

n

The monomorphism ¢ associates with each permutation in S, a ‘permutation matrix’
in GL(n, C). This monomorphism assigns a complex (linear) representation T to the
permutation representation n;, and also a faithful complex (linear) representation
to the permutation representation 7, of G (where nL ~ L/K =:J < G). We shall
call T and ¢ the linear equivalents of my, and 7;, respectively. Diagram (7) shows that,
in the case of groups L < H of finite index, problems concerning representations 7,
of infinite groups H can be translated into problems concerning faithful representations

of the finite group G. We shall see presently that the solutions to these problems can
be transferred back to H.
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Let us now consider the decomposition
T = @ ni'Ei (8)

of the faithful representation t of the finite group G into irreducible representations
,:G = GL(M). We know that the linear equivalent 7 = 0Oz, of the permutation
representation 7y is in fact the representation of G induced by the unit representation
I, of the subgroup J:

r = Ind®I, =:1§. 9)

We shall write 1§ for the character of I5. Thus by Frobenius’ reciprocity theorem

A5lede = iy =1 (10)
where
1
Gilnade = — 2 1192209 (11)
IGI geG

for any two (complex-valued) class functions, x; and ¥, on G. This shows that t contains
the unit representation 1, exactly once. Hence, (i) 7 is always reducible (for J # G), and
(if) 7 is transitive on the co-sets of Jin G.

More generally we have (writing y; for the character of 7;):

Al e = {1y|Res x>y = m < dim M, (12)

showing that n; is the dimension of the subspace U, = M; on which J (via 7) acts trivally.
Res 1, in (12) denotes the restriction of r,:G — GL(M,) to J < G. Restriction is also
called subduction.

All these results can be lifted from (the finite group) G to H, because of the following
(almost trivial) proposition. Let M be a representation space for H (ie. an H-module)
such that the action T:H — GL(M) has a kernel K of finite index in H. Then M is
completely reducible (i.e. for every H-submodule N of M, there exists a H-submodule
N of M suchthat M = N @N).

It follows that to the decomposition (8) there corresponds a decomposition

t
T = ®nT, (13)
i=1 .

with (possibly after renumbering)

T, = 1,0m. (14)

Furthermore, n,, as given by (12), is the dimension of the subspace U; = M; on which
L (via T) acts trivially. '
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3. The Curie principle

According to Curie (1894), ‘the characteristic symmetry of a phenomenon is the maximal
symmetry compatible with the phenomenon. A phenomenon can exist in a medium
which has its symmetry or that of one of the intergroups of the characteristic symmetry’.
Curie terms intergroup what today we call subgroup. He furthermore says: ‘If several
phenomena are superposed.. ther remain as symmetry elements... only those that
all phenomena have in common’.

Zhéludev and Shuvalov (1956) and subsequently Sonin and Zhéludev (1959) have
applied Curie’s principle to ferroelectric phase transitions (i.e. to transitions where
the electrical polarization P of the crystal is the order parameter), taking crystallo graphic
point groups and space groups, respectively, as symmetry groups H of the disordered
phase. The symmetry group L of an ordered phase is then the intersection H A I of
H and the symmetry group I of the polarization. It then follows that L is the largest
subgroup of I' that leaves the crystal invariant and also the largest subgroup of H that
leaves the order parameter P (in a given orientation) invariant.

This latter property can be used to give the Curie principle an interpretation in
terms of the group H only (Ascher 1966a, b). In the lattice of subgroups of H, one selects
those that leave the order parameter Q invariant (Q-groups) and then selects those that
are maximal with respect to a given Q. In all the ferroelectric transitions considered by
Ascher (1966a), the groups arising obey a stronger principle (termed maximality princi ple),
and are maximal with respect to the property of leaving some orientation of the order
parameter invariant. The situation is similar in the case of the more general transitions
studied in the previous paper (Ascher and Kobayashi 1977).

4. Epikernels

By analogy with the Curie principle, we propose here as groups that can possibly arise
in phase transitions from a phase with symmetry H only those L < H that are maximal
with respect to the property of acting trivially on a given (non-zero) subspace U, of the
representation space M, of a given irreducible representation T, of H. Equivalently
this means that L is maximal with respect to the property that the linear equivalent I¥ of
the permutation representation n; contains a given irreducible representation T; of H
a given number of times. The subgroups fulfilling these conditions will be termed
epikernels of T; and we write

LeEk T, : (16)
In more detail, (16) means that

Ty = n # 0, (16)
and

QT =mn, LSF (16b)
imply

L=F. (16¢)

Epikernels were introduced by Melvin (1956) in a different context and in a different
way under the name of co-kernels. The reasons for our change of denomination is
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that ‘co-kernel” has by now a precise, and quite different, meaning in algebra. It is likely
that this algebraic notion of co-kernel will play a role in the subsequent development
of our theory. Epikernels (ie. Melvin’s co-kernels), however, are pull-backs (see e.g.
MacLane and Birkhoff 1967). The epikernels of the crystallographic point groups have
been determined by McDowell (1965). During the writing of the final version of this

aper we became acquainted with the work of Murray-Rust et al (1975) and Janovec
et al (1975) in which the epikernels of the crystallographic point groups have been
determined and used. In the latter paper they appear in connexion with Birman’s
subduction criterion (Birman 1966). From Frobenius’ reciprocity relation (12) one can
see that the subduction criterion amounts to the following requirement: the irreducible
representation T;: H — GL(M;) of H and the subgroup L of H have the property that
L acts trivally on some non-trivial subspace of M;. Among such subgroups L, Janovec
et al admit only ‘the maximal subgroups of those in which the same identity representa-
tions are subduced’. These are exactly the epikernels. A more restrictive selection is
introduced below.

In this paper the relations between permutation representations and epikernels
have been worked out for the first time. Also, the equitranslation epikernels of the
crystallographic space groups have been tabulated. These are the symmetries of the
homogeneous low-symmetry phases arising in phase transitions in which the number of
atoms in the primitive unit cell does not change, The question of non-equitranslation
epikernels and ‘non-homogeneous’ phases will te taken up in subsequent papers. The
discussion of the relation of epikernels to subgroups admitted by the Curie principle
also necessitates a separate paper; the results in both cases are almost the same.

The (unique) minimal epikernel of T; is the kernel K; = Ker T;. Indeed the linear
equivalent I¥ of the permutation representation mg, of H contains the irreducible
representation T; a maximal number of times, namely d; = deg T; = dim M, times.
This can be realized by noticing that I¥/Xt is the regular representation of H/K. Equi-
valently this means of course that K; is the epikernel of T; which is trivial on the largest
subspace of M, namely on M, itself. It follows that

Le Ek T; implies KerT,=:K; < L; ' (17

hence the name epikernel. Indeed, suppose that K; is not contained in L. The the sub-
space U; © M,, fixed (element-wise) by L is also fixed (element-wise) by the subgroup
K,L < H. But L < K,L, and this contradicts the hypothesis that L is maximal with
respect to the property of fixing U,. As a consequence of this we see that the trivial group
1 can arise in a phase transition from a group H if and only if H has faithful irreducible
representations, whereas the Curie principle imposes no such restriction.

There are in general several maximal epikernels of a given irreducible representation
T,. They are also maximal with respect to the property that the linear equivalent I¥ of the
permutation representation m; contains a given irreducible representation T; of H.
Equivalently these are those groups that are maximal with respect to the property
that there exists some non-zero subspace U, of the representation space M; of T; on which
L (via T)) acts trivially. The maximal epikernels are exactly the subgroups selected by
the maximality principle. It seems (Ascher 1966a, b) that the maximal epikernels give
those symmetries that arise from the minimization of the thermodynamic potential.

The necessary condition (17) for a group L to be an epikernel of the irreducible
representation T, of H can be put in other more useful forms. First we show that

1= @&nT (18)
=
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and

Le BkT, ie{l,...,s} (19)
implies

K =Ker¥ =KerT,; = K,.

Indeed, from (18) we deduce K < K;. But K; < L follows from (19), and from this we
obtain

K, =KerIZ < KerIf = K. (20)

We have seen that the decomposition (18) corresponds to the decomposition

t
ji=1
with
T; = n,0m.
Hence Le Ek T, implies
Le Ek1; Kert; = 1€ HKK = G. (21)

From this we conclude that a necessary condition for L to be an epikernel of the
irreducible representation T; of H is that H/K has faithful irreducible representations.
Furthermore, L is an epikernel of the irreducible representation T, of H if and only if
L/K is an epikernel of the faithful irreducible representation t; of the finite group H/K.
Thus everything is reduced to the study of faithful irreducible representations of finite
groups.

5. Tables of equitranslation epikernels

If L is an equitranslation subgroup of a space group H (containing translations A4), so is
the core K of L. Thus G = H/K is isomorphic to a crystallographic point group. The
equitranslation epikernels such as L (of some irreducible representation T;) of H are
ina one-to-one correspondence with the epikernels J of the faithful irreducible representa-
tions of the finite group G. Thus ultimately we have to consider only the fourteen faithful
irreducible representations of the twelve isomorphism classes of crystallographic point
groups that have such representations. (The isomorphism classes S, and S, x C, each
have two of them.) This gives altogether forty pairs of groups J < G, and only twenty-
five for which J is not only an epikernel but a maximal epikernel. The properties of the
system near the transition depend on these pairs.

It may be seen from tables 1-18 that, in the cases where G is either S, or S, x C,,
a pair of groups L < H is not always sufficient to determine an irreducible representa-
tionof H. Thus, the transitions Oy — C3y, Of —» C37,03 — C18,0f - C15,08'7 - C22,
Oy = C3;, Of - Ci8 and O}° — C%? determine the representations T,, and T,, of
S, x C, and these subgroups are maximal epikernels for both representations. In the
following transitions, the subgroups are maximal epikernels for T, of S,, but not for
T, of §,:0'% - C3, Ty >3 - C8, T346 5 C3, QL4579 C3, and O% 3> 110 5.C8,.
Furthermore, O'~® — C{, T{™® — C} and O}~'° - C} determine T, and T, of S,;
Op? = Cl, OF* > CZ 0O36° 5 C3, O] 810 C¢ and O}° —» C! determine T,,
and T,, of S, x C,, non of these subgroups being a maximal epikernel.
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There are eighteen tables, one for each isomorphism class of crystallographic point
group. In column I the finite groups G are given and in column 2 their faithful irreducible
representations. Column 3 shows their epikernels J and the number of conjugates for
each of these given in column 4. Then, after a vertical line, we find the epikernels L
(which are space groups) corresponding to those in the same row of column 3. In the
first column of this second part the (geometric) crystal class of the space groupis indicated.
The Schoenflies superscripts of the space groups follow horizontally. Thus we find
here in each column a space group (in the first row) and the equitranslation epikernels
of the irreducible representations (below). The space groups of the first row are grouped
using braces ( ~~ ) into arithmetic crystal classes. If there are several isomorphic crystal
classes, they (and the corresponding space groups) are separated by vertical lines. A
horizontal broken line divides (for a given irreducible representation) the maximal
epikernels (above) from the others.

We have adopted the Schoenflies symbols for their only advantage: shortness.
More extended tables using the international notation are being prepared for a mono-
graph. There it will be possible to indicate for each subgroup the orientation with
respect to the axes of the supergroup H.

Tablel. C,;
C, A C, 1 C, 1
Table 2- C2
— —

C, A C, 1 C, 1 2 3 C 1 C, 1 2
C, B C, 1 C, 1 1 1 C; 1 C, 1 1 11
Table 3. C;
C, A C, 1 C, 1 2 3 4
C, E C, 1 C, 1 1 1 1
Table 4. C,
C, A C, 1 C, 1 2 3 4 5 6 S, 1 2
C, B C, 1 C, 1 21 2 33 C, 1
C, E (o) 1 C, 1111 11 C, 1 1
Table 5-D2=C2xC2
C;, A C; 1 D, 1 2 3 4 56 7 "8 9 Cyp ‘1 2 45 3 6
cC, B C 1 C, 1122 23 3 33 C 1111 11
cC, B C 1 C, t 212 31 3 33 C, 1 212 33
c, B C 1 C, 1122 33 3 33 C, 11 22 3 4

- % N A N A ‘\f—j\—\f—-—k__‘_—\
C,, 123456 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22
C, 1 222 2 2 222 2 3 4 4 3 3 4 4 3 4 3 4 4
C, 1 211212121 1 2 1 3 3 3 3 3 3 3 3 3
C, 11 2122122 2 3 3 4 1 2 1 2 3 4 3 4 3
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Table 6. C, = Cs x C,

c, A ¢ 1 Ce 1 23456 Cyn 1 Cy 1 2
c, B ¢ 1 C; 1233211 C, 1 C, 1 4
cC, E ¢ 1 c, 122112 C, 1 G 11
Ce E, C 1 c, 111111 C, 1 C, 11
Table 7. C, x C,
c, A ¢ 1 Cuw 1234 "5 6
c, B ¢C 1 cC, 1313 56
c, B C 1 Cpy, 11 44 36
c, B ¢ 1 S, 1111 22
c, E ¢C 1 G 11 11 11
¢, E ¢ 1 C, 1122 34
Table8. D, x C, =C, x C, x C,
c, A ¢ 1 D, ‘1 23 45 627 89 10 11 12 13 14 15 16
c, B ¢C 1 D, I 1112 2223 3 3 3 3 3 4 4
c, B ¢ 1 Con 1 44 42 4155 5 4 5 2 5 5 5
c, B ¢ 1 C,, 1 10 462 66 52 9 4 7 7 9 5 2
c, B ¢ 1 Cn 1 41 44 4541 4 2 1 4 5 5 5
c, B ¢ 1 Cav 110 3 81 107 38 3 510 1 5 5 7
c, B ¢ 1 Can 1 4441 5445 5 5 5 2 4 5 2
c, B ¢ 1 Cy, 1 104 6 4 9482 9 2 7 7 6 5 9
‘17 18 19 20 21 22° 23 24 "25 26 27 28
5 5 6 6 6 6 7 7 8 8 9 9
3 3 3 6 3 6 3 6 3 6 6 3
16 17 14 16 15 17 18 19 20 22 21 22
2 5 1 1 4 4 3 6 3 3 6 6
12 12 11 13 11 13 18 19 20 21 21 20
6 3 3 6 3 6 3 6 3 6 6 3
14 15 14 16 15 17 18 19 20 22 21 22
Table9.C4 x C, =C3 x C, x C,
c, A ¢ 1 Cep 1 2
¢C;, B ¢ 1 Ce 1 6
¢, B ¢ 1 Cy 1 1
¢, B C 1 Cypn 11
C; E ¢ 1 Copw 1 2
Cs E, C 1 C, 1 2
Cs E, C 1 C, 11
Cs E, ¢ 1 C, 1 1
Table 10. D,
. A ¢ 1 D, T35 246 7 c,, T3 24 56
C, B ¢ 1 C; 123 123 4 C, 11 11 4 4
D, E ¢C, 3 C, 3 3 33 3 C, 34 3 4 3 4
c, 1 C;, 111 111 1 c, 11 11 11

TR £ o e s
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Table 11. D,
c, A C 1 D, T 234356758 T 10
c, B C 1 C. 11223344 5 6
c, B C 1 D, 13241324 8 9
c, B C 1 D, 66556655 7 7
D, E C, 2 C, 1 21 2121 2 3 3
c, 2 C, 33333333 3 3
c, 1 c, 11111111 11
——t— —t rt— —r
D,y 1 2 3 4 5 6 7 8 9 10 11 12
S, 1 1 1 1 1 11 1 2 2 2 2
D, 1 1 3 3 666 6 1 7T 8 9
C,, 11 13 11 13 1 3 8 10 20 21 18 19
C, 1 1 2 2 3 33 3 3 3 3 3
C, 3 4 3 4 122 2 3 4 3 4
C, 1 1 1 1 111 1 1 1 1 1
Cow 1T 2 3 4 5 7 8 9 10 11 12
Cs 1 1 3 3 1 1 3 3 5 5 6 6
C,, 1 8 3 10 3 10 1 8 20 21 20 21
C,, 11 11 11 11 13 13 13 13 18 18 19 19
C, 1 2 2 2 2 1 2 3 4 3 4
C, 3 3 3 3 4 4 4 4 3 3 4 4
C, 1 11 1 1 1 1 1 1 1 1 1
Table 12. A,
‘ —M =
c, A ¢ 1 T 1 4 "3 5 2
C, E C, 1 D, 1 4 g8 9 7
A, T C 4 C, 44 4 4 4
c, 3 c, 12 33 3
c, 1 c, 11 11 1
Table 13. S,
C, A C, 1 O 126 7 3 4 5 8 T, 1 4 2 5 3 6
C, B C, 1 T 1 1 4 4 2 2 3 5 T 1 1 2 2 3 5
D, BE G, D, 1 4 9 10 9 10 D,, 1 2 910 11 12
C, 1 D, 11 44 7 1 g8 9 D, 1 1 7 7 g8 9
S, T, C, 3 cC, 1 342 5 6 5 6 S, 1 1 2 2 2 2
c, 4 C, 4 444 4 4 4 4 C, 4 4 4 4 4 4
c, 6 c, 3333 3 3 3 3 C,C 3 4 3 4 3 4
C, 1 C, 1 111 1 1 1 1 Cy 1 1 1 1 1 1
S, T, D, 3 D, 6 6 55 8 9 7 7 C, 11 13 20 21 18 19
D, 4 D, 771171 7 11 7 Ciy 5 6 5 6 5 6
C, C, 3 3 3 3 .3 C, 3 4 3 4 4
C, 1 c, 1111 11 1 1 C, 1 1 1 1 1 1

E9
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Table 16. A, x C,
,__.A__._ﬁ
c, A ¢C 1 T, 1 2 6 3 4 5 7
C, B C 1 T 1 1 4 2 2 3 5
C, E C, 1 D, 1 2 15 23 24 25 27
Cs E, C, 1 D, 1 1 4 7 7 8 9
A, T C, 3 Con 1 4 5 3 6 3 6
Cs 4 Cy 2 2 2 2 2 2 2
C, 1 [0 1 1 1 11 11
A, xCy T, D, 3 C,y 1 10 § 18 19 20 21
Cs 4 Cs 4 4 4 4 4 4 4
c, C, 1 2 2 3 4 3 4
c, 1 c, 1 1 1 11 11
Table 17. S, x C,
— A N A PR N,
C, A C, 1 O, 1 2 3 4 56 7 8 9 10
C, B C, 1 0 1 1 2 2 3 3 4 4 5 8
C, B C, 1 Ty 1 2 1 2 3 3 4 4 5 17
C, B C, 1 T, 1 4 4 1 2 5 2 5 3 6
D, E C, 3 D 1 4 9 12 17 18 19 20 17 20
c, 1 D, 1 2 1 2 23 23 24 24 25 27
Dy E, C, 3 D, 1 5 5 9 9 10 10 9 10
C, 3 D,, 1 2 1 9 10 9 10 11 12
C, 1 D, 1 1 1 1 7 7 1 1 8 9
S, T, Cs 3 Cin 1 3 2 4 5 5 6 6 5 6
C, 4 Ca; 2 2 2 2 2 2 2 2 2 2
C, 6 Con 3 6 6 3 3 6 3 6 3 6
C, 1 C 1 1 1 1 1 1 1 1 1 1
S, T, D, 3 D, 19 22 20 21 25 26 28 27 23 24
D, 4 Dsq 5 6 6 5 5 6 5 6 5 6
C, Cyn 3 6 6 3 3 6 3 6 3
C, 1 C, 1 1 1 1 1 1 1 1 11
S, x C, Tiu D, 3 Cu 1 6 7 4 9 10 11 12 9 12
D, 6 Cay 14 17 16 15 20 22 22 21 18 19
D, 4 Cs, 5 6 6 5 5 6 5 6 5 6
C, 6 C, 3 4 4 3 3 4 3 4 3 4
C, C, 1 2 1 2 3 3 4 4 3 4
C 1 C, 1 1 1 1 1 1 1 1 1
S, xC, T, D, 3 D,y 5 8 5 8 1111 12 12 9 10
D, 6 c, 141716 15 20 222271 1819
D, 4 D, 7 7 1 1 7 17 7 7. 7 17
C, 6 C, 3 3 3 3 3 3 3 3 3 3
C, 3 C, 1 2 1 2 3 3 4 4 3 4
C, 1 C, 1 1 1 1 1 1 1 1 1 1
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Table’ 18- DG X C2 = D3 x c2 X CZ

—

C, A C, 1 Dgy, 1 2 3 4
C, B C, 1 D¢ 1 1 6 6
C, B C, 1 Cen 1 1 2 2
C, B C, 1 Céy 1 2 3 4
C, B C, 1 D;, 1 2 1 2
CZ B Cl 1 D3h 1 2 2 l
C, B C, 1 Di, 3 4 4 3
C, B C, 1 Dy 3 4 3 4
D, E C, 3 D,y 19 20 17 17
C, 1 Ca 11 2

Dy E, C, 3 D, 6 6 5 5
C, 3 C,, 11 13 12 12

C, 1 C, 1 1 2 2

Dg E, C, 3 Con 3 6 3 6
C, 3 Con 3 6 6 3

(oH 1 G 1 1 1 1

Dy E,; C, 3 C,, 14 16 16 14
C, 3 C,, 14 16 14 16

C, 1 C, 1 1 1 1

6. Concluding remarks

Permutation representations reveal themselves as a powerful tool in the study of phase
transitions (or transitions between two states of different symmetry). There remain a
few unanswered questions about epikernels of finite index. However, the most interesting
physical and mathematical problems ahead concern the generalization of the results
so far obtained to epikernels of infinite index and the standard forms of the thermo-

dynamic potentials.

Acknowledgment

This work has been supported by Battelle Institute, Columbus, Ohio. I also wish to
thank David Gay for the many pleasurable and stimulating discussions.

References

Ascher E 1966a Helv. Phys. Acta 39 466-76
—— 1966b Phys. Lett. 20 3524

—— 1971 Les Transitions de Phase, 13¢ Cours Association Vaudoise Chercheurs En Physique pp 34-80
Ascher E and Kobayashi J 1977 J. Phys. C: Solid St. Phys. 10 1349-63

Birman J L 1966 Phys, Rev. Lett. 17 1216-9
Curie P 1894 J. Physique 5 289



Permutation representations, epikernels and phase transitions

Janovec V, Dvorak V and Petzelt J 1975 Czech. J. Phys. B 25 1362-96
MacLane S and Birkhoff G 1967 Algebra (London:Collier-MacMillan)
McDowell R S 1965 J. Molec. Spectrose. 17 365-7

Melvin M A 1956 Rev. Mod. Phys. 28 18-44

Murray-Rust P, Burgi H B and Dunnitz J D 1975

Sonin A S and Zhéludev I S 1959 Kristallogr. 4 487-97

7héludev 1 S and Shuvalov L A 1956 Kristallogr. 1 681

1377



