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The Case of Piaget's Group INRC

EDGAR ASCHER

Université de Genéve

What is it that distinguishes Piaget’s transformations N, R, and C from the rest of the 16!
transformations of the 16 binary propositional operations? Here Piaget’s INRC is considered
as a subgroup of the group .#; of all automorphisms and dual automorphisms of the free
Boolean algebra with two generators. This group is isomorphic to §, X C,. Its elements are
given explicitly. Many other psychologically relevant subgroups of .#; play an important role.
They are discussed and their connections shown. Particular attention is given to involutions,
even if the view that they constitute the sole representation of reversibility is abandoned.
Piaget’s transformation R turns out not to be the inverse operation of relations. The group of
automorphisms, dual automorphisms, anti-automorphisms of the algebra of binary relations
on a finite set is found. A crystallographic presentation of these groups is given and related
work by Bart (Journal of Mathematical Psychology, 1971, 5, 539-553), Leresche (Revue
Européenne des Sciences Sociales, 1976, 14, 219-241), and Polya (The Journal of Symbolic
Logic, 1940, 5, 98—103) is discussed.  © 1984 Academic Press, Inc.

ALGEBRAIC MODELS

My purpose in this paper is to dispel some misconceptions about Piaget’s group
INRC and thereby to open the way for a fruitful use of groups of so-called logical
transformations and to model other domains of cognitive activities. The group INRC
appears for the first time in Piaget (1950). Many comments and discussions have
appeared since; but much of it is subtly vague, at best. If one wants to be more
precise, it behooves one both to make clear what the group is meant to model and to
become aware of its mathematical environment. This is not to say that the
psychological and epistemological problems Piaget wanted to tackle are in fact
mathematical problems. But it is useless, and may indeed be dangerous, to ask of
psychology what mathematics by itself can accomplish. On the other hand, it is clear
that one cannot reduce psychology to mathematics. The psychologist has to select the
adequate mathematical structure for his problem. (This, of course, includes the
possibility of deciding not to attempt any mathematical formalization.) But then he
must be sufficiently aware of the mathematical possibilities which can be related to
his subject matter. Sparse mathematics may blind one to interesting aspects of
behaviour, adequate mathematics is full of suggestions for experiment. And that is
another reason to discuss some of the various mathematical questions raised by the
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investigation of the role played by the group INRC in the genetic psychology of
logical operations. “Our main goal is [to contribute to] the construction of an
adequate mathematical model, wherein one can make deductions and inferences
strictly from the mathematical structure itself, and then emerge from the
mathematical structure with interpretation hypothesis...” (Hoffman, 1980, p. 422).

The mathematical structures we want to discuss belong to algebra (and to its most
elementary parts at that). Again this does not mean that other mathematical
structures may not be useful for formalizing problems that arise in genetic
psychology. But Piaget has favoured what he calls “logical formalization”: “...logical
formalization is absolutely essential every time we can carry out some
formalization; ...” (Piaget, 1970, p. 10).

There are, however, at least two styles of logical formalization: the algebraic one
and that of the theory of deduction. As far as Piaget is concerned, it seems correct to
say that ... the author, joining the tradition of algebraic logic of Boole, Peirce, and
Schréder, takes an algebraic view of the subject rather than the one of the theory of
deduction” (Beth, 1950, p. 259). Within the context of Beth’s virulent attack against
the “Traité de Logique” (Piaget, 1949), this evocation, of what to Beth then appeared
to be the rear guard of a defeated tradition, was clearly meant to deprecate Piaget’s
book. Nevertheless, it remains true that “logical formalization” for Piaget does mean,
in the first place, algebraic formalization. Indeed, he says (Piaget, 1967, p. 269), “In
view of the present lack of numerical units in psychology, the usefulness of }oglcal
models consists in providing a possible image of the very operations of the sl{bjech as
well as of the operational structures (“groupings,” groups, lattices, etc.) which these
operations form between themselves.” y

What he has in mind then, are qualitative models and not quantitative ones; not
the mathematical disciplines related to psychometrics, but algebra. . .

In this paper, we shall deal with some algebraic structures of logical operations.
Such structures, however, are not related exclusively to logic. Hence they may ke
used to characterize patterns of propositional as well as of experimenla,l, activity. 0‘_“3
is thus led to the view that they characterize an “algebra of competence dct?ctable_m
the patterns of actions of a person reasoning or solving problems, doing things with
propositions or with material objects. .

For Piaget, the important algebraic structure that emerges during eradolescenog
and that explains most of the achieved and achievable performances is the INR
group. id

To understand how this group arises, and what it sta'nqs.' for, we have to consi e;
two among the acquisitions of preadolescence: the possibility of the child to “:wm
given situation as one among several possible ones and his capacity to move Iro
one of these possibilities to others related to the situation at hat}d- fcus et

The constitution of the set of possibilities that could be taken into account 1s

: A i atori —as
step. As far as propositions are concerned, Piaget limits the com!;!r;:f;réf;{::;i’;; b
he calls i inati ropositions present 1n a Ir - :

it—to the combinations of prop 4 be realized that this algebraic

(mostly that generated by two propositions). It shou :
F : H ter-
structure is the result of a great number of constraints (axioms) imposed on the In
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propositional operations “and” or “meet,” “or” or “join,” and “negation” or
“complement” (as will be seen in the next section). These constraints reduce the
number of possibilities to a tractable amount and thus render the constitution of the
combinatorial system both possible and useful. The question then arises of when this
reduction is achieved and in which order the several constraints are introduced by the
child (in other words, which are the intermediate algebraic structures). This however
is not the subject matter of the present paper. Our problem is at a level above that of
the free Boolean algebra, which we take for granted in this context. Indeed, Piaget
not only posits the existence of the combinatorial system of all possibilities that could
be taken into account by the child, but he examines also the means she has to move
among these possibilities and effectively to take into account only those that are
appropriate in a given situation. These, in most cases, do not make up the whole
combinatorial system.

The mobility necessary for this is achieved by operations on the combinatorial
manifold, that transform its elements among themselves. At the stage of formal
operations, the transformations should be reversible and organized into a structured
whole by associative composition. If we add that each transformation operates on
any element of the manifold, then the structured whole is a group.

The notion of mobility will be made more explicit in the section entitled “Mobility,
Orbits, Subgroups.” One should also ask oneself in what order and under which
circumstances the highly integrated structure of a group is built up from weaker (and
more complicated) structures, and also whether any of these remain pertinent in some
situations even at the stage of formal operations. These important questions are
outside the scope of the present paper. Here the group structure of the transfor-
mations is taken for granted. The concept of reversibility, however, needs some
elucidation.

Reversibility has been modeled by the fact that every element g of a group has an
inverse g~* such that gg~' =g 'g=e, where e is the unit element of the group
(representing, in our case, the identity transformation, that leaves everything
unchanged). The property of having an inverse has sometimes been interpreted
erroneously, by Piaget and others. It is therefore necessary to discuss this point.
Consider the operation J that transforms an element g of a group into its inverse g/,
i.e., Jg=g ! Let us call J the “inversor.” The inversor J acts on the elements of a
given group (that may already, as in our case, be a group of transformations). It is
not an element of that group. The inversor has the special property that, if it is
applied twice to an element g, the result is again the same element g. This may be
noted J’g =g and expresses simply the fact that the inverse of the inverse of an
element g is again that element g, i.e., (')~ =g. In other words, the square J* of
the inversor J is the identity transformation on the group in question (not belonging
to that group). Transformations whose square, like that of the inversor, is equal to the
identity, are called involutions. But on no account does the fact that the inversor is an
involution mean that the reversibility of an operation g (i.e., the existence of an
inverse operation g~') implies that it is an involution (i.e., that g2 =e).

The idea that every reversible operation is an involution appears at many places in
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Piaget’s writings. In particular Piaget’s group INRC is a group that, in addition to
the identity element, contains only involutions, and may be the reason why Piaget has
considered INRC to be rhe group of logical transformations. This becomes
particularly inconvenient, when one supposes that all changes that mark the passage
from the stage of concrete operations to that of formal operations derive from that
group considered as representing the “mental structure” or “algebra of competence”
of the preadolescent. Thus, in “The Early Growth of Logic” (Inhelder and Piaget,
1958), the wealth contained in the psychological experiments has been trimmed to the
size of INRC, much to the expense of the basic idea of an algebra of competence
which this book was meant to promote.

Our first task, then, is to show that INRC is by no means the only group of logical
transformations that it is meaningful to consider.

THE Group INRC AND THE AUTOMORPHISMS OF FB(2)

Piaget (1972, p. XIV) “became aware of the existence of this group [INRC| within
the propositional operations before 1949 (believing, moreover, that they were known),
that is at a time when logicians still had not taken any interest in it.”

This group, INRC, operates on the sixteen binary propositional operations (BPO)
shown in the second column of Table 1. The operation N is the usual, Boolean,
logical negation. “A second operation [R] may be called “reciprocity.”' \_«Ve may ..
call reciprocity the transformation that consists in negating the prop_osntnons which
compose a given binary operation.... But reciprocity may be defined differently and I
called it reciprocity with this second possible meaning in mind. In the f:ase.of _the:
implication p— g, the reciprocal is g—p- Thus, the reciprocal of an mphcatnog
results from permuting the two propositions occurring in the expression at stakel
(Piaget, 1950, pp. 144, 145). The first definition is unambiguous, but t}w seoond' is
equivocal. Consider, e.g., the binary operation p V ¢. It is equivalent to p' = ¢- Whlc}:
are “the two propositions occurring in the expression”? If we cFJns_lder tl'1em to be p
and g, then we get ¢ — p’ which is equivalent to p'Vqg' This commdt?s w1'th the result
obtained by applying the first definition. This, then, is the meaning intended Iby
Piaget. It is, however, not less natural to consider p and g as propositions occurring
in pV g or g—p’, and this then remains unchanged when the second .deﬁmtlor; 1;
used. The result is an operation, different from Piaget’s R, and f(?r which wc; s :-
introduce the sign 7. Let us note that both R and T change p—¢ into ¢=p- ' }n:5
paper, the operation T will play a role at least as important as that of R. The
operation C, finally, is defined as the product of Nand R: C= NR=RN. :

But in fact there are 16! (roughly 2 - 10'?) 1-1 transformations or permutations O
the sixteen BPO, and not only four of them, since a priori the wholt? symmetric gl‘";};‘z
S s, the group of all permutations of 16 items has to bc tE,l’kEIEI into account. s
restriction to 1-1 transformations guarantees «reversibility,” since for every suc
transformation ¢ there exists an inverse 4,

. : i tural to
However, most of these permutations are not interesting. It seems na
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consider the 16 BPO not simply as any 16 items, but to take into account how these
BPO are related to each other. If one looks at the manner in which the 16 BPO can
be obtained from two of them by using conjunctions, disjunctions, and negations,
then one is led to consider the BPO as elements of a Boolean algebra, and more
precisely, of a free Boolean algebra FB(2) with two generators. Consequently, one is
then led to take into account only those transformations that “respect” this structure,
in a sense which will be made clear presently.

Bart (1971) has imposed quite different conditions on the transformations of the
elements of FB(2); the Boolean structure is not respected (cf. Appendix 3).

Let us recall here what a Boolean algebra is and what is meant by free. We do this
in a way which permits easy comparison with operations on the set of relations we
shall define below. Furthermore, making the algebraic ingredients of Boolean algebras
explicit may suggest experiments concerning these features and about the gradual
building-up of Boolean algebras from them.

A Boolean algebra

2 =(B,A\,V,",0,1)

is a set B with two binary operations A (meet) and V (join), one unary operation
(complement) and two nullary operations (i.e., special elements) 0 and 1. These
operations have properties stated and explained below.

(i) First consider #,= (B, A, 1,0).
(a) The operation A is associative, i.e., for all elements x, y, z of B,
xA(yAzZ)=xAp)Az (1)
(8) It has a unit element 1; this means
xAl=x=1Ax (2)

for all x.

Properties (a) and (f) are usually summarized by saying that .#, is a monoid.
However, this monoid has further properties.

(y) It has a null element 0:

xAN0=0=0Ax 3)
(d) It is commutative:
xAy=yAx 4)
(¢) It is idempotent:
XAx=x (5)

for any element x of B.
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(i) @y=(B,V,0,1) is a monoid (unit element 0) with null element 1, that is
furthermore commutative and idempotent.

(iii) The operation  is characterized by
(@) &) =x (6)
B xAx'=0,xVx'=1 (7)
(iv) The operations A and V are linked in many ways.

(a) Absorption:
xAEVy)=x=xV(xAy), (8)

(B) Left distributivity (right distributivity then follows from commutativity):

x/\(sz):(xAy)V(x/\z), 9)
xVOAZD)=xVYAEV2) (10)
(y) De Morgan equalities

(x/\y)’:x’Vy’, (11)

xVy)=x' Ay, (12)

1’ =0, (13)

and

=1, (13")

as a consequence of (6). .

We may also say that, (11), (12), (13), and (6) express the fact that ’is an
isomorphism of the monoids .#, and Py.

A Boolean algebra is free on n generators if :
elements that can be formed from the n generators by performing the operations A,
V, and ',

If we then consider the 16 BPO as elements of the fr
two generators, it is reasonable to take into account no
only transformations that conserve the Boolean struc
automorphisms. Such an automorphism ¢ is a one-to-onc ma
itself such that

it contains exactly all different

ee Boolean algebra FB(2) with
t simply transformations but
ture, that is Boolean
pping of the set B onto

d(x Ay)=¢x Aoy, 14
f(xVy)=9xV ¢ (15)

p(x") = (#x)'s (16)
60=0, ¢1=1 (1n
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This limitation to automorphisms turns out to be altogether too drastic, since the
transformations N and C, as defined and used by Piaget, are not automorphisms;
they do not, for instance, conserve the special elements 0 and 1, as would be required
by (17). Indeed Piaget defines N as being exactly the operation ’. Hence, comparison
of (13), (13’), and (17) shows that N is not an automorphism; and neither is C, since
C—=RN=NR. It will be easy to get hold of these and similar elements once the
automorphisms have been found.

It is not difficult to find the automorphisms of a Boolean algebra. One has to take
into account the fact that every finite Boolean algebra is isomorphic to the Boolean
algebra of all subsets of a finite set; the operations are the union and the intersection
of sets, the set theoretic complement, the void set, and the original set (e.g-, Kurosh
1963, p. 189). If the set has n elements, the corresponding Boolean algebra will be
noted B(n). It has 2" elements. A free Boolean algebra with n generators FB(n) has
27 (with p = 2") elements and is isomorphic to B(2"). In the case of the 16 BPO we
have n = 2: FB(2) ~ B(4).

The set of all automorphisms of a Boolean algebra is a group under function
composition. (A group is a monoid in which all elements have an inverse.) The group
of all automorphisms of a finite Boolean algebra B(n) can be obtained from, and is
isomorphic to, the symmetric group S,, the group of all permutations of the 7
elements of the corresponding set. More precisely, it is a subgroup of the group S,
(p=2") of all permutations of the 2" elements of B(n). In particular, the
automorphism group % of FB(2) is a subgroup of S, isomorphic to S, and has 24
elements. For the subsequent discussions, we need to know how these transformations
operate on the 16 elements of FB(2). It is also worthwhile to understand how to
obtain them. We therefore introduce a short notation for each of the elements of
FB(2). We derive it from the notation for the binary propositional operations
introduced by Lukasiewicz (Bochenski, 1959, p. 11). He writes, for instance, 4pg for
pV q and Kpq for p A g. We denote the corresponding elements of FB(2) by a and K,
respectively, and thus obtain the notation contained in Table 1. Furthermore, to each
element we associate (column 3) a subset of a set of four elements, whose elements
are -designated by the same letters as the four elements k, I, m, and x. This establishes
an isomorphism between FB(2) and the subsets of the set {k, I, m, x} in which there
corresponds to each subset the element of BL(2) that is the disjunction of the
elements of the subset. Thus, for instance, {k, ], m} corresponds to k VIV m=a.

We now introduce the diagram of a finite Boolean algebra (often called its lattice)-
We say that an element x (different from y) covers y if

(i) xVy=xand
(i) there is no other element z such that

xVz=x, zVy=z.

_NO“' COHHCFIEHS every element by an ascending line exactly to all elements that cover
it, we obtain a diagram of a finite Boolean algebra. Figure 1 shows the lattice of
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TABLE 1

Notations and Generators for the Free Boolean Algebra FB(2)

(l', h} {f, e) (e, h)
o 1 lkq f,m.x] 1 1
a pVag {k, I, m} ive o Vh
b pVa’ {ky 1, x} iVe a8
c pr\-'"q {k,m,x} i"Ve eV h
d p!Vq' {!,m,x} i've' EAVEY.
: 2 tk. 1} i e~ h
" 9 {k, m} iee h
e peqe {k, x} e e
A p’ it.m} e e
. 7 {Lx} iwe h
J P {m, x} i ewh
, PN {k} iNe fw_.'\},'
. phg {1} ine e’ Ah
" piig {m} i'Ne' e AR
3 #he {x} i"Ae ek
o 0 g "

Note. For columns 4 and 5 see under the heading “Relations.”
*peg=(pA)V (P NG
pwg=(pAg)V(p' Nq)

FB(2) thus obtained. Given such a lattice, joins and meets of any two elements can
easily be found. The join (meet) of two elements is the element at which the
ascending (descending) lines starting from these elements meet.

To obtain from the group S, of permutations of the four elements k, I, m and x, the
isomorphic subgroup % of S,s one simply has to find how the elt?ments of 184
transform the subsets of {k, /,m, x}. Take, for instance, the transformation (kx) (;'n)
that exchanges first / and m, and then k and x. This transformation induces, for

v

Fic. 1. Lattice of FB(2)
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example, a transformation of the set {k, [} into the set {m,x}, that is (according to
Table 1), of the element i into the element f; the set {k, l,x} is transformed into
{k, m, x}, that is, b is transformed into c—and so on. We thus find that (kx)(Im) € S,
induces

(kx)(Im)(ad)(be)(if)(hg)(€)(J)(©)(0) € S i6-

It may be seen that this is Piaget’s transformation R, e.g., in (Piaget, 1972, p. 254).

This way, we obtain the whole group .+, of automorphisms of FB(2) shown in
Table 2. The elements of .+, are represented as products of cycles. The cycles are
applied to the elements of FB(2) from right to left. A cycle (lkxm), for instance,
transforms [ into k, k into x, x into m, and m into I: (lkxm) = (Ik) (kx)(xm).

A permutation X is said to have order n, if performed n times it gives the identity
permutation I (X" =1I). The group ., contains elements of orders two, three, and
four. The 24 elements are divided into five groups; these are conjugate classes of S,
defined and used below. We have not indicated how the automorphisms transform the

TABLE 2
Group .+, of Automorphisms of FB(2)

S, Extended to S Generators
(k)(D(m)(x) (a)(B)(c)d) ORI 1
(mx)(k)(!) (ab)(c)(d) (he)(ig)(D)(f) UTU=VP
(Ix)(k)(m) (ac)(b)(d) (ie)(if )(h)(g) U
(kx)(7)(m) (ad)(b)(c) (i)W )e)) vuv=TR
(Im)(k)(x) (bc)a)(d) (in)(gf )e)) T
(km)(I)(x) (bd)(@)(c) (i)(ef )h)(g) TVT=UQ
(kl)(m)(x) (cd)(a)(b) (R)(eg)()(S) 4
(kl)(mx) (ab)(cd) (hg) (&) S) uruy =°p
(km)(Lx) (ac)(bd) (i Xe)(h)(2) VUrr =9
(kx)(lm) (ad)(bc) (i )(hg)(e)) TVTU=R
(Ixm) (k) (abe)(d) (ieR)(jgl) U
(kxm)(I) (abd)(c) (igj)(hef) TUVT
(Imx)(k) (acb)(d) (ihe)(jgf) ur
(Tkx)(rm) (acd)(b) (ieg)(jRf) uv
(kmx)(1) (adb)(c) (tig)(ehf) TvuT
(lkx)(m) (adc)(b) (ige)(iff) vu
(Tkm)(x) (bed)(a) (ikj)(efz) TV
(Imk)(x) (bdc)(a) (iih)(egf) yr
(Tkexm) (abed) (ieff){hg) TUV =UP=RU
{Ixmk) (abdc) (igf)(ef) VIU=TQ=PT
(Imkx) (acbd) (jheg)(if) UVT=VR =0V
(lkmyx) (acdb) (ihfz)(ej) UTV =QT=TP
(Ixkm) (adbc) Uigeh)(if) TVU=RV=VQ

(Imxk) (adcb) (iife)(hg) VUT = PU = UR
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elements v and o. According to (17) they remain unchanged. Thus, (v) (o) should be
added to each automorphism.

Some of these automorphisms have been given special symbols (P, Q, R, U, T, V).
They are involutions (there are three other involutions in s¢;). Involutions are
transformations X of order two: X’ =1I.

Such transformations are equal to their inverse: X =X"". Piaget calls them also
“reciprocities.”

The important role played by involutions in the formalization of Piaget’s
psychology and epistemology has been stressed by several authors (see, e.g., Wermus,
1972). But the groups of transformations considered were always groups consisting of
involutions (i.e., Boolean groups). The group . contains 13 such groups and .#,
relevant to the discussion of the transformations of the BPO (cf., subsequent section)
contains 48 of them, of which 25 are isomorphic to INRC. Thus, INRC has no
special status a priori as a group of logical transformations.

It has often been considered, that inversible operations are represented by
involutions. However, “this ‘strong’ view of reversibility is derived not from extensive
empirical examinations of reversibility behaviors but rather from a consideration 9f
the reversibility indicated in the INRC group” (Bart, 1971, p. 542). As discussed in
the first section, this view probably arises from a misinterpretation of the fact that the
“inversor” is an involution.

It is clear that transformations of orders higher than two play a role in the
functioning of intelligence. In such cases, reversibility simply corresponds to the
existence of an inverse transformation, that however need not be equal to the original
one.

Nevertheless, giving up the strong view of reversibility, the exclu§ive [:'ll'iVI!CSF of
involutions to represent reversibility, does not mean abandoning involutions
altogether. They still play an important role in the groups underlying a persons$
intellectual (and other) activities. The group % of automorphisms of FB(2)is a good
illustration of what may happen. This group is not a group of involutions, but a
group generated by involutions, the three involutions U, T, and V for instance. That
is, every element of ./, can be written as a product of these three elements
(generators), as shown in the column “generators” of Table 2. It can be seen there
that no element is the product of more than four factors. ) i

A more complicated structure than that of Boolean groups arises because ’
generating involutions do not commute. Noncommutativity and the appearar_lceuo
higher order (i.., noninvolutive) operations are probably closely related .genl?lca ci
Now, noncommutativity is certainly a basic experience in the growth of mfte g oy
Below, in the discussion of subgroups, we shall find a typical example of nonco
mutativity.

Involutive generators of .+ other than U, T, and ¥ may bc? selected. Some u[‘tl(:v:::
selections will be discussed below. Depending on the choice of generat:sl;:srylt:d 5
automorphisms appear more complicated than others, since they are|reprchological
products of many factors. Such a notational complication may revea psybe selected
complexity. One may even require that it be so; that is, that the generators
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in such a way that the genetically simple appears as simply generated. There is, of
course, also the possibility of choosing as generators elements other than involutions.
The possibilities are numerous, and to point this out is all we can do here. The
algebraic model must be adapted to actual experience.

We conclude this section by remarking that, quite generally, «,, the group of
automorphisms of the free Boolean algebra FB(n) with n generators is isomorphic to
S, (p=2n) and that it is generated by 2" — 1 involutions. It is also useful to know
that it may be viewed as a group of crystallographic transformations of a (2" —1)-
dimensional crystal. In the case we are mainly interested in (7 = 2), the crystal is an
ordinary 3-dimensional cubic crystal. More about the crystallographic representation
may be found in Appendix 1.

DuAL AUTOMORPHISMS
Piaget’s transformations N and C are not automorphisms of FB(2), but dual

automorphisms (d-automorphisms for short), that is, transformations that fulfil the
following conditions:

Yix Ay)=¥xV ¥y, (18)
Y(xVy)=¥xA\¥, (19)

Y(x") = (¥x) (20)
Y=1, ¥1=0. 21

We may now say that Egs. (11), (12), and (13) express the fact that ’ is a d-
automorphism. Furthermore, we note that Piaget’s transformation N, the Boolean
negation, is the operation ’:

Nx=x"; (22)

thus, it is ir_ldeed a d-automorphism. It has the further property of commuting with all
automorphisms; equations (16) and (22) give together

PN (x) = Ng(x). (23)

' It is important to note that the product of an automorphism and a d-automorphism
is a d—_automorphism. Piaget’s C, which is equal to RN, is an example. Furthermore,
as it is easy to convince oneself, the product of two d-automorphisms is an
automorphism. (The d-automorphisms do not form a group.) It follows that in 2
group containing automorphisms and d-automorphisms, there is the same number of
both of them; the order of such a group is necessarily even. We shall call such 2
group, a group of “mixed automorphisms”. As we shall see, the d-automorphisms of
such a group are not necessarily those obtained through multiplication by N of its
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automorphisms. In other words, a group of mixed automorphisms is not always a
“direct product” of its subgroup of automorphisms by the group {7, N}.

If among the d-automorphisms of a group of mixed automorphisms, there is one
involution, say X, that commutes with all automorphisms, then the group is a direct
product of its subgroup of automorphisms with the group of order two generated by
that element. Equation (23) shows N is such an element. Therefore, the group A, of
all mixed automorphisms of FB(2) is the direct product of % and the group (N)
generated by N; it is isomorphic to S, X C,:

My =y X (N) =8, X C. (24)

In other words, each d-automorphism is the product of an automorphism with N.
(But in a subgroup of .#; these automorphisms may be absent.) The action of N is
known from (22); thus, all d-automorphisms can be computed by multiplication of
permutations. The result is shown in Table 3.

Since .+, was generated by three involutions, it follows from the construction, that

TABLE 3
Dual Automorphisms of FB(2)

Elements of S Generators

(ax)(bm)(el)(dk) (if )(hg)(e/)

(am)(bx)(cl)(ak) (if Y(hj)(eg) 43
(al)(bm)(cx)(dk) (i)(he)(ef) U=UN
(ak)(bm)(cT)(dx) (ih)(/&)(&) TR
(ax)(bl)(cm)(dk) (ig)(hf )(&)) T=1N
(ax)(bk)(el)(dm) (ie)(if )(hg) ug
(ax)(bm)(ck)(d!) (if )(he)(g) N
(am)(bx)(ck)(al) (i )(m)(e)U)(e8) P=PN
(al)(bx)(ck)(dm) (hg)(i)(e)U)S) g_ = g; "

(ak)(bl)(em)(dx) (eNDE)ENS)

(amexbl)(dk) (ijhfeg) TUN
(amdxbk)(cl) (ihifge) TUVIN
(albxem)(dk) (igefhj) UTN
(aldxck)(bm) (ijgfek) UVN
(akbxdm)(cl) (fegffh) TVYUIN
(akedkl)(bm) (ihefzj) VUN
(bldmck)(ax) (igifhe) TVN
(bkemdl)(ax) (iehfig) VIN B
(amck)(bldx) (iife)(h)(g) TUVYN =RU
(amal)(bkex) (ikfz)(€)U) VTUN = P_{,
(albk)(cmdx) {e:}}g))[{f;(é)) gTV;{ ;’ = %i
(aldm)(bxck) (igfh)(e s e
(akbl)(cxdm) (egiM)i)(f) TVUN=V0

(akem)(bxdl) (iefi)(h)(8) vUTN = UR
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A, is generated by four of them, U, T, V, and N, for example. However, we shall see
that it can be generated by three involutions only, and in a given context this will
appear as a natural way of generation.

The 24 d-automorphisms form five conjugate classes of S, X C,. Note that there is
a class of elements of order six. Again, we have not indicated the action of the d-
automorphisms on v and on o. According to (21), v and o are exchanged in all cases.
Thus, (vo) should be added to each d-automorphism.

Generally, the group .#, of all mixed automorphisms of FB(n) is given by

M=, X Ny~ S, X C, (25)

(with p=2"). It can be generated by 2" — 1 involutions.

We have thus found a group .#; of 48 elements operating on FB(2). For various
reasons it may be tempting to want to deal with smaller and simpler groups.
However, reasons for doing so have to be advanced, at least tentatively. The
restriction must not simply be obtained through unawareness of other possibilities or
by decree. In the following two sections, we seek for criteria permitting to restrict the
group #; to some of its subgroups.

MosiLiTY, ORBITS, SUBGROUPS

In this section we discuss various subgroups of the group of mixed automorphisms
%, and introduce a convenient way of describing how they operate on FB(2).

First we want to illustrate the role played by such groups in experimental
situations. It will be best to quote from “The Psychology of the Child” (Inhelder and
Piaget, 1969, p. 139), where we find a convenient illustration. “Let us take as an
example the implication p— g, and let us imagine ... [that] a child between 12 and 15
.. observes a moving object that keeps starting and stopping.... He notices that the
stops seem to be accompanied by the lighting of an electric bulb. The first hypothesis
he will make is .. p— g (light implies stop). There is only one way to confirm the
hypothesis, and this is to find out whether the bulb ever lights up without the object
stopping or pA g’ [=N(p- g)].... But he may also wonder whether the light instead
of causing the stop is caused by it or g— p (now the reciprocal [R(p— g)] of p—*9)-
Tf: conﬁrm_ q—p (stop implies light), he looks for the opposite case which would
dlsconﬁr-m it; that is, does the object ever stop without the light going on? This case,
p'Ag, is the inverse [N(p—gq)] of p—g. It is at the same time a correlative
[C(p—~q)] of p>g.”

Inhelder and Piaget describe here a set of four elements of FB(2) that are
trar!sformed among themselves by the group INRC, i.e., what technically is called an
orbit of that group on FB(2). This orbit, then, is the set {b, ¢, I, m}. The other orbits
of INRC are {a,d,k,x}, {i,f}, {h,g}, {e,j} and o, v}. Orbits containing four

elements are termed “quaternes” by Piaget (195 “« ity” by
Gottschalk (1953). y Piaget (1950) and “squares of quaternality
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In experimental situations one observes orbits, the subsets of those among the
possibilities of the combinatorial manifold, that are effectively taken into account by
a person in a given situation. From the orbits one may infer the group that generates
them. The orbits are the expression of the mobility embodied in the group of transfor-
mations, acting on the combinatorial system. “Thus, without knowing any logical
formula or the formal criteria for a mathematical “group”..., the pre-adolescent of 12
to 15 is capable of manipulating transformations according to the four possibilities 1,
N, R, and C.” (Inhelder & Piaget, 1969, p. 140.)

The “quaterne” {b,c,/,m} seems to accompany the use of the implication in
experimental situations. It is therefore noteworthy that there are four other subgroups
of #, besides INRC (G,) that have this same orbit, as may be seen in Table 4, where
the orbits on FB(2) of all the subgroups of .#; discussed in this section may be found.

Note that even the largest group .#; has more than one orbit. Groups of
permutations that have a single orbit are termed “transitive.” It is not clear whether
transitivity should be considered as an advantage or rather as a handicap. According
to the interpretation of orbits proposed here, transitivity would mean that a person
would actually take into account all possibilities of the combinatorial manifold. (For
another view of transitivity, see Appendix 3.) Anyhow, the groups ., and .=/, are not
transitive on FB(n), so that a structure-preserving group cannot be transitive, and a
transitive group cannot be structure preserving. .

Before discussing subgroups of .#; and their orbits, let us summarize the view of
mobility of thought that has been advanced here. There are two aspects to it. (i) The
mobility provided by the combinatorial system of all possibilities that co'uld be taken
into account: this system is the outcome not only of new freedom acquired but _also
of constraints that limit the possibilities to a tractable amount. (ii) Transformations
that operate on the combinatorial manifold and that are not specific to elements of

TABLE 4
Orbits of Groups of Mixed Automorphisms

A {abed | kimx}{ihejgf }

G, {abed | kimx}{ihgf Hei}

G, {abed | kimx}{if } {heHeit

G, {ad | kx){be | Im}{ihgf Helj}

G, {ab | ki) {cd | mx}{iH{f }{heHei}

G, lrwIkmlibdllx}w’lief}{h}{q}

G, 1adlkx}{bclmil{éf}{kxlielu} ‘

G iaIklibCImedifothgHelJ_}

G {mﬂkaMf}{rlmnfg}ihﬂiel;l

G, ialx}{dlk}IbCIImefoI.{EIJ}

Gy {ad | kx}{be | Im\{if] hgi{elJ} _
Gy {nlxﬂbIMHCIl}{dik}lr‘lflihlxllelm

Note. Under the subgroups of automorph!s:ﬁs l_Jf these g;o:iis;
some of the orbits split into two orbits. Th; spilEtlng is indicated by
vertical line. The orbit {v |0} has been omitted in all cases.
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the manifold but apply equally to all of them and form a group: the group, however,
is restricted by the requirement of preserving some or all of the structure that has
been used in the construction of the combinatorial system. As a result, the group,
although its transformations are defined everywhere on the system, does not
necessarily provide the means of transforming an element of the system into any
other element.

To distinguish subgroups of .#;, we shall now examine how they act on the two
generators of FB(2). There are several possibilities of choosing these generators,
essentially three possibilities, since with each generator its complement also occurs.
We have thus the three systems of generators,

{p.q} or [{ih}
{p,pegq} or  {ie}
{p+aq,q} or le, k).

The group =%, of all automorphisms (and, a fortiori, the group ;) exchanges the
systems of generators. The automorphisms U and V, for instance, transform the pair
{i, h} into {e, h} and {i, e'}, respectively. It seems reasonable, therefore, to investigate
those transformations that do not change one chosen system of generators into
another. As for the choice of the system, it appears most natural to take {p, q} (the
“standard generator system”). We are thus selecting now those transformations
contained in Tables 2 and 3 that permute the elements i, A, f; and g only among them-
selves (and, by the way, do the same to the remaining 12 elements of FB(2)). We find
the 16 transformations detailed in the second and third column of Table 5.

TABLE 5

Automorphisms and d-Automorphisms that Preserve the Generator System {p, q}

] Crystallographic
Permutations Generators Interpretation
(Pa@)p ) I R=cC 1 m,
(P )@)e') @ P 2 m,
(ga')pXp')  TQT=P g=TPT 2, m,
(pr')(gq") QTQT=R* N 2, 1
(pa)(p'q’) T _ TR my 2
(pa")(gp’) QTQ=PTP® TN m, 2,
(par'q") oT PT i, 4
(Pa'p'q) Q0 TP a i

Nole.l The crystallographic interpretation is presented in
Appendix 1.

® QTQT=PTPT=R.

b QTQ=PTP=TR.
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The 16 elements form a subgroup G, of .#; they make up the invariance group of
the generator system {p, q}. However, they act on the generators p and g only in
eight distinguishable ways, as shown in the first column of Table 5. For each
automorphism, there is a d-automorphism, that acts in the same way on the set
{p»q,p’,q'}, but differs, of course, in its action on the remaining elements of FB(2).
The d-automorphism C =R =RN, for instance, reduces to the identity transfor-
mation when restricted to the above set. Thus, any automorphism and the d-
automorphism resulting from it by multiplication with R have the same effect on the
generator system {p,g}. The action of G, is the same as that of its subgroup of
automorphisms G (second column of Table 5) or, indeed, as that of the three other
subgroups of G, that are isomorphic to it; all are isomorphic to D,. We shall refer to
G, and G} as “restricted groups” of, respectively, mixed automorphisms and
automorphisms of FB(2). The whole group G, is generated by multiplying the
elements of D, by N (or by R=C). The structure of G, is thus that of a direct
product

G|2D4X Cz- (26)

Recall that the dihedral group D, (n>3) is a group of 2n elements ti'lat is
isomorphic to the group of symmetries of a regular polygone of n sides. It is not
commutative and is generated by two involutions x and y obeying the defining
equations

x=y'=()" =1L 27
For n=2 the equations also define a group, the commutative group D:!" Piaget’s
INRC is isomorphic to D,. Groups isomorphic to D, can be; found in n:’amy
situations and D, has been given various names, of which “Klein’s four-group,  or
simply “four-group™ are found most frequently.

The fact that x and y do not commute for n+# 2 is shown most clearly by

xy= ()" (28)

an immediate consequence of (27). In columns two and three of Tablt:_ 5, wl:: ha:e
displayed the involutions Q and T (and also P and T) as generators of a subgroup

isomorphic to D,. Equation (27) here specializes to
7Q = (Q7)°

and this shows how the noncommutativity co
exchanging the two generators p and g (by T) an The
complement p’ (by Q) (i.e., negating one of the generators) do ndot c:l:tmcl:;;mute
automorphism P that negates (complementS) the o[herlge_n Frator i oeses of noncom-
with T either. This may exemplify one of the most pnmlthe‘ expe‘rle_ncan involution)
Mutativity: exchanging the two members of an ordered pair (this 15

; mute, and
and doing something to one member are operations that do not com

(29)

mes about. The operatio'ns 'of
d that of exchanging p with its
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performing one after the other results in an operation that is not an 'invoh'ltion, even
though one starts with two involutions. It may be interesting to mvesng;te early
experiences of noncommutativity. The four subgroups of G, isomorphic to Dy
mentioned above are the groups generated by (for instance) Q and TN, Q and T, P
and TN, and finally P and T. Let us use the last group to illustrate the fact already
mentioned, namely, that a group of mixed automorphisms is not necessarily the direct
product of its subgroup of automorphisms with the group (N) generated by the
Boolean negation N. In our group, there are four automorphisms I, TPTP, T, and
PTP: the d-automorphisms P=PN, TPT, PT, and TP are not obtained by
multiplying by N the automorphisms of the group (i.e., the transformations P, TPT,
PT, and TP do not belong to the group in question). )

It is plausible to think that the restricted groups G, and G represent the mobility
of thought that a person of the formal stage (i.e., a nonspecialized person) may attain.
However, in the gradual building-up of competence, sub-groups certainly play an
important role. We now proceed to discuss some of them.

We have already met with the group

G,={I, R} = (R) (30)

generated by R. It is the subgroup that leaves p and g as well as their complements
unchanged.

Studying Table 5, we can characterize some other subgroups of G,. The group that
fixes the generator p (as well as p’) and the one that fixes g and g’ are, respectivelys

G,=1{LP;R, 0} = (P X (R) G
G,= {1, 0; R, P} = (Q) x (). (32)
The group G, is generated by P and R, G, by Q and R. The elements listed after the

semicolon are d-automorphisms. The generators are exchanged (and their
complements also) by

Gs={I, T;R, TR} = (T) X (R). ¢33)
The two generators are changed into their complements by
G,={I,R; R, N} = (R) X (R). (34)

This is Piager's INRC. All these groups are isomorphic to Klein’s four group D,,
but the last two deserve a special status because of their simple action on both
generators. They also have in common Piaget’s “quaterne,” the orbit {b, ¢, I, m}- Two
further groups, isomorphic to D,, that have such an orbit are

G,={L,T;N, T} =(T) x (T)
and

Gy={L,R; T,RT} = (R) X (T).
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Note that the permutations R and T play similar roles in these four groups—for
example, G, is the “T-analogue” of Piaget’s INRC. In the last section on relations,
we shall see that T not R, as Piaget thought, corresponds to the operation of
conversion of a relation.

Generators are fixed or exchanged with their complements by

G,=G,V G, = {I,P,Q,R; N, P, 3, R} = (P) X (@) X (N). (35)

Note that G, is not the set-theoretic union (this would not be a group), but the group
generated by the groups in question. Finally, the group that exchanges generators and
also their complements or changes generators into complements is

G,=G,V G,= {I,R,T,TR; N, R, TN, TR} = (R) X (T) X (N). (36)

We shall meet this group when discussing structure preserving transformations of
relations. It is also the largest group having Piaget’s “quaterne” as orbit. Both the
groups G, and G, are isomorphic to D, X C; = C,xC,XCy.

How these groups are related, is shown in the lattice of Fig. 2 of subgroups of the
group of mixed automorphisms .#;. It is a sublattice of the lattice of all subgroups of
.#,. The groups on the right are groups of mixed automorphisms, those on the left are
automorphisms. The five groups having an orbit {b, ¢, I, m} are boxed. Among them
is Piaget’s G,. The lines linking a group to a supergroup (above) and a subgroup
(below) may also suggest pathways for the gradual building-up of these transfor-
mation groups during the development of intelligence.

All the subgroups of .#; and of ., discussed s0 far concern the generator system
{i, h}. The corresponding subgroups for the systems {i,e} and {e, h} are obtained in
the following way. The automorphism U (VP) exchanges { and e (h and e); the

Fig. 2. Lattice of subgroups of 4.

480/28/3-6
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subgroups fixing the generator system {e, h} ({i,e}) are conjugates by U (VP) of the
subgroups fixing {i,e}. Recall that the conjugate of a subgroup G of .#, by an
element x € # is the set xGx ' = {xgx~': g € G}. Another similar construction will
be of interest. The set C,= {xgx~':x € G} of all elements conjugate to a given
element g, is termed the conjugate class of g. Conjugate classes are either disjoint or
coincide. Tables 3, 4, and 5 display this partition into conjugate classes.

If x is not in G, then the group xGx ™' may be different from G or equal to G. It is
equal when G is a normal (self-conjugate) subgroup, otherwise it is different. In the
lattice of Fig.2, the normal subgroups are placed in circles. These groups are
common to the three generator systems. The only case not obvious from the
beginning is that of the group G,=(P)X (Q)X (N), and of its subgroup of
automorphisms Gj. These groups fix the generators or exchange them with their
conjugates in any generator system.

A word of caution is needed for the groups G, and its subgroup of automorphisms
G: that exchange the generators and also their complements. They have six
conjugates and not only three like the other non-normal subgroups. One should add
to the subgroups already considered the subgroup G, that exchanges a generator with
the complement of the other:

Gy={I, TR; R, T} = (TR) x {C).

The pair (Gs, G,) is transformed by conjugation into the pairs corresponding to the
other generator systems.

With the help of the crystallographic translations of Appendix 1, all these groups
may be visualized as transformations of a cube. The change of generator system,
particularly, becomes easy to grasp.

In addition to the gradual building-up of the restricted group G, and, ultimately,
perhaps the (unrestricted) group .#; suggested by the lattice of Fig. 2, one may also
wish to consider the successive construction of .#,, .#;, .#,,..., or the corresponding
restricted groups. Bart (1971), for instance, has suggested that a person’s capacity for
combining propositions may be measured by the number n of generators of FB(n), or
more adequately, by the number of generators of the group operating on FB(n).
Bart’s construction of that group will be discussed in Appendix 3. If we take the
group .#, , the number of generators increases as 2" so that, when progressing from n
to n + 1, we have to add 2" new generators. The same occurs in the case of Bart’s
group @,, although the structure of his groups is quite different. In Appendix 2, we
present Pdlya’s construction (1937, 1940) of the restricted group of automorphisms

of FB(n). The situation improves radically. The number of generators is n; at each
step, we have to add one more generator.

RELATIONS AND THEIR STRUCTURE PRESERVING TRANSFORMATIONS

For Piaget the group INRC is the synthesis of two kinds of reversibility, and of the
two domains where the two reversibilities N and R originate. The one, N, corresponds
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to the taking of complements in the domain of classes and, at the stage of formal
operations, becomes Boolean complementation (or negation). The other domain is
that of binary relations and the operation is that of inversion (or conversion) of
binary relations. Piaget thought that R is the operation that brings about conversion.

In this section we shall argue that 7 and not R corresponds to conversion; we shall
examine the “algebra of relations” as being a synthesis of the Boolean structure (of
which N is characteristic) and of the “Peircean” structure of relations to which T
pertains; and we shall determine the structure-preserving, reversible transformations
of the algebra of relations.

First, however, let us illustrate some notions concerning binary relations. In
connection with Fig. 1 we have already introduced a binary relation, the relation K
“covers.” We see in Fig. 1, e.g., that a covers h or, aKh; and only a covers h. The
converse binary relation K is “is covered by.” We see that h is covered by a, hKa. Tt
is clear that #Ka is true if and only if aKh is true:

hKa « aKh. (37)

However, not only k, but also i and j are covered by h. A binary rela}ion S’ is
symmetric if “y is in the relation S to z” implies “z is in the relation S to y” and vice
versa:

y8z e z8y.

In view of (37), one may say that a symmetric relation is “gelf-converse,” i.e.,
conversion leaves a symmetric relation unchanged.

Piaget (1972, p. 339) maintains “... that the reciprocity R _corrf:sp{?nds to the
inverse operation ... of relations (and to the permutation of the ... implication between
propositions).” He also asserts that “the binary operations inclu@e only one transfor-
mation by permutation [that transforms p—=¢ into g - p] and vice versa ..., namely,
g-p=R(p—q)” (Piaget, 1952, p. 48). )

Wilhougpanyql)‘urt(hergrestriction, there are, of course, 14! such transformations. If,
however, we take into account only automorphisms of FB(2), th'en Table 2 shf:ws
that there are two of them which transform p—¢ into g —» p and vice versa, that Is, ¢
into b, namely Piaget’s R and the automorphism which we have labelled 7. There 1s
no d-automorphism that does the job. In fact, it is T that corres;_)onds to the operation
of conversion of a relation. This is plausible, since conversion lea'ves symme;n':::
relations unchanged and since T is the automorphism that fixes the eight symmetri
elements of FB(2), namely, {v,a,d, €.Js k, x, 0}.

Presently, we shall elaborate this assertion and qu
recall the algebraic structure of relations on a set -of el
may be found, for instance, in Tarski (1941) and in Jénnson and
1952).

On the set 4 of binary relations on a finite s
absolute) operations: two binary operations A

alify it. But first we have to
lements. Detailed information
Tarski (1951 and

et, it is possible to define Boolean (or
and V (meet and join), one unary



302 EDGAR ASCHER

operation ’ (complement) and two special relations 0 and 1 (null relation and
universal relation) such that the algebra

B =(4,\,V,",0,1)

is a Boolean algebra, the “Boolean algebra of relations.” The binary relations on a set
B of m elements may be interpreted as subsets of the set B X B with m? elemr:nts.
(Finer distinctions are possible and necessary in other contexts.) Then the opera'tlons
meet, join, and complement of .# simply are the set-theoretic operations of inter-
section, union, and complement. Thus, the algebra .2(m) of binary relations defined
on a set of m elements is isomorphic to a Boolean algebra B(m?) with 29 (g =m?)
elements. On the other hand, the free Boolean algebra FB(n) of n-ary propositional
operations is, as we know, isomorphic to B(2"). Putting n = 2p, we find the cases in
which the Boolean algebra of relations is isomorphic to a free Boolean algebra (of
propositional operations):

2(2”)~ FB(2p),

i.e,, the Boolean algebra of relations on a set of 2” elements is isomorphic to the free
Boolean algebra with 2p generators. Thus, the relations .#(2) on a set of two
elements are isomorphic to FB(2); .#(3) is not isomorphic to any free Boolean
algebra, in particular not to FB(3), but .#(4) is isomorphic to FB(4), .Z(8) to FB(6),
and so on.

So far, the—Boolean—algebra of relations has not provided us with any means of
reducing the number of automorphisms (and d-automorphisms) which should be

taken into account. However, operations other than the Boolean operations can be
defined on the set of binary relations.

These operations are termed Peircean or relative operations by Tarski. There are
two binary operations, the multiplication - and the addition +, one unary operation,
the conversion , and two special relations, the identity relation E and the diversity
relation J, in addition to complementation and to the relations 0 and 1 of the Boolean
structure that play a role also in the Peircean structure. More precisely, we can say
that this structure, the Peircean algebra of relations is given by

P = (A! +, ", ’, Es J, 09 1)*
where the operations have the special properties indicated below.

(i) A.=(A,-,E,0)is a monoid (unit element E) with null element 0.

(i) 4,=(4,+,J,1) is a monoid (unit element J) with null element 1.
(Note: addition, like multiplication, of relations is not commutative !)

(iii) The unary operation ~ is characterized by:
X " =x, (38)
X-v) =7-X (39)
X+Y) =Y+% (40)
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i, ~is an idempotent anti-automorphism (a-automorphism) of each of the monoids
A. and A, . (“Anti-,” because the order of the elements is inversed.)

(iv) The unary operation ', in addition to its Boolean properties, obeys iden-
tities of the De Morgan type:

X-Yy=X'+Y, (41)
x+Y)=X".Y, (42)

ie., ' is an isomorphism of the monoids 4. and 4 ,. By analogy with the Boolean
case, we say also that ' is a d-automorphism of .#*. Moreover, the Boolean and the
Peircean structures are linked by the distributivity (right and left) of - with respect to
V and by the distributivity (right and left) of + with respect to A.

Again, if a relation is interpreted as a subset, then the following set-theoretic inter-
pretation of the Peircean operations can be given:

—(y,2) € X - Y means that there exists an element u such that (y,u) € X and
m2)EY;

—(y,z) € X + Y means that for all u one has either (y,u) EX or (u,2)E Y or
both;

—(y, z) € X means that (z,y) € X.

Furthermore:

—(y,z) € X' means the we have not (), Z)EX.
We write from now on N for ‘. The next step is to establish carefully that one can
write T for .

We now substantiate and make more precise our claim that the converse of a
relation X is the relation 7X and that it cannot be RX. We shall first say _wl'mt is
meant by symmetric BPO. A BPO, i.e., an element of FB(2), is symmetric if it is left
unchanged by the exchange of the two generators chosen to express the elements of
FB(2). This definition obviously depends on the choice of generators—'and_ not only
on what we have termed the generator system. Thus, for what may ]ust:ﬁz}bly be
called the “standard generators,” Viz. (p, g) in that order, the eight symmFtrlc BPO
are {v, a, d, e, j, k, x, 0} the “standard symmetric BPO.” It is the automorphism T that
leaves this set invariant elementwise. These are the symmetric BPO also for tl;le
generators (g, p), (', '), and (¢'s p'). The choices (p.q') (@'sP): ' q)., and (¢, 7'),
single out the BPO {v, b, c, &,j, I, m, 0} as symmetric, and the fmtmflorphlsm TR fixes
each of these. Similarly, the two other generator systems give rise to two §ets ?f
symmetric BPO. (Cf. columns 4 and 5 of Table 1.) This becomes almost obvious 1n
the crystallographic representation of Appendix 1.

As we ﬂpplyplhe transformations of M, to the 16 BPO, the stand.ard generators}
successively transform into each of the 24 possible 'generator pairs, the set 0f
standard symmetric BPO is successively transformed m'to each of the siX se:; o
symmetric BPO, and the subgroups that fix the symmetric BPO are transformed at
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the same time. If a transformation 7 € .#; transforms a symmetric BPO, say s into ts
and if the transformation ¢ fixes s (¢s = s), then obviously, 7é7~" (the conjugate of ¢
by 1) fixes zs. Thus, as t varies over the group .#;, the automorphism 7" that fixes the
standard symmetric BPO, is transformed successively into all elements of its
conjugate class. Tables 2 and 3 are divided into conjugate classes. As can be seen,
Piaget's R does not belong to the conjugate class of 7. Thus, it cannot be, for any
choice of generators, the transformation that fixes the symmetric BPO and transforms
the others into their symmetric counterpart.

There remains to transfer these findings from the free Boolean algebra of the 16
BPO to -the isomorphic algebra of binary relations on a set of two elements. To this
end, we remark that the choice of an ordered pair of generators—(p, ¢) in our case—
enables us to regard the elements of FB(2) as Boolean functions. Let 2 be the set
{1,0} and 2 this set ordered by 0 < 1. A Boolean function ¢ is a function on the n-
fold direct product 2 X --- X 2 (domain) to 2 (codomain):

$:2X - X252

We write 22" (with n times 2 in the exponent) for the set of all n-ary Boolean
functions.

It is now possible to identify elements of FB(n) with such functions. For instance
a € FB(2) is identified with the function that has the value 0 at the ordered pair (0, 0)
and the value 1 for the other three pairs (because p'V g is false when both p and g are
false, and true in the other three cases). Similarly, the value of m € 2?? at (0, 1) is 1
and it is O at the other arguments. This establishes an isomorphism

FB(2) ~ 222, (43)

erz g?all use the same symbols for the elements of FB(2) and the corresponding ones
of 2%2,

In the preceding section, we had chosen a generator system and then found the
invariance group G, of that system. It is clear that, essentially, what we have found
there is the group of mixed automorphisms of the Boolean functions 22?. The
subgroup of automorphisms is isomorphic to the automorphisms of the domain of
these functions, i.e., of the direct product 2 X 2; this group is isomorphic to D, the d-
automorphisms are obtained by adjoining to these the (only) d-automorphism of the
codomain 2.

Remember, however, that the isomorphism (43) is based on the choice of a definite
?air of generators: the standard pair (p, g). It may, therefore, be termed the “standard
isomorphism.” But if, for instance, we choose the generators (p, ¢), then it would be
the element pV g' that corresponds to the Boolean function a, and p’ A g’ would
correspond to m.

Exa_clly in the same way, i.e., by a choice of generators of FB(n), it is possible to
establish an isomorphism

FB(n)~ 222, (44)
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The next step is to provide an isomorphism
22 ~ 2(2). (45)

A convenient way is to identify the Boolean function ¢ € 2** with the relation ¢
defined by

(r,z)€E¢  ifand only if ¢(,2)=1

(i.e., to consider the Boolean function as the characteristic function of a subset). This
establishes a one-to-one mapping between 222 and .2(2). We shall use the same
symbols for the elements thus related. By the same token, the automorphisms of
FB(2) now represent isomorphisms between FB(2) and 2(2); the standard
isomorphism corresponds to the identity automorphism.

We have defined what is meant by symmetric BPO. It is clear that this definition
carries over to binary Boolean functions and to binary relations. A binary Boolean
function ¢ is symmetric if, for any y, z €2,

6(z,5) =42 2)
A binary relation ¢ is symmetric if; for any », Z,
(z,y)€E¢  implies (»2) €Y.

This shows: (i) that with the standard isomorphism, it is T that Ieiwes symmetric
relations invariant, and (ii) that the operation ~may be identified with the transfor-
mation T

X=X (46)

Concerning the role of automorphisms, our previous discussion of symmetric BPF)
carries over too. In any case, the transformation that leaves invariam a symmetric
relation, must belong to the conjugate class of T; therefore, 1t canr_lot be R.
Furthermore, from (39), (40), and (46), we know already t.hat T is not an
automorphism of the Peircean structure; it is an anti-automorphism of .#*. Which,
then, of the Boolean automorphisms are also Peircean ones? _

The only automorphisms with respect to the Peircean structure of relations on a
finite set come from renumberings of the clements of the set. Thus, the. Peircean
automorphisms of #*(n) form the group S, of all permutations of n objects. 'Fo;
P(2), this is the group of the order two; the automorphism itself is easily recugmzer
as Piaget’s R, in case the standard isomorphism is chosen. For any choice O
isomorphism, this automorphism is an element of the conjuggle class of'R, \:rh;::l; is
{P, Q, R}. Thus, R does not correspond to the “inverse operation of relat_mns,’ ut is
the only Peircean automorphism of F(2), in addition, of course, to the identity.

If we take into account the Boolean and the Peircean structure of relations, we
have

# =AU NV, BN 1,E,J)
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the “algebra of relations.” We are interested in the structure-preserving transfor-
mations of .#. We have met four types of transformations.

(i) Transformations that are automorphisms of .# and of .#°. We have seen
that R is an automorphism of .#(2) and of .9(2). Such transformations will be
termed automorphisms of #.

(i) Transformations that are d-automorphisms of .# and of .7, for instance,
N and RN=R are d-automorphisms of .#(2) and of #(2). They are the d-
automorphisms of #.

(iii) Transformations that are automorphisms of % and a-automorphism_s of
2. Since the binary operations of .# are commutative, there are no a-automorphisms
of .Z. We call these the a-automorphisms of #. Example: T and TR.

(iv) Transformations that are d-automorphisms of % but are dual a-

automorphisms with respect to .#. These are the da-automorphisms of #. The
transformations TN and TR are da-automorphisms of .#(2):

TN(r- s)=TNs + TNr. (47)

It is easily seen that T and N—in addition to commuting one with the other—also
commute with all automorphisms of .7*(n). Furthermore, 7 and N cannot be obtained
by any renumbering. Thus, the group £, of all automorphisms, d-automorphisms, a-
automorphisms, and da-automorphisms of .#(n) is a direct product

Z=S, X (T) X (N)~S,X D,, (48)

where D, is generated by T and N. In particular,

%= (RYX(T) X (N), (49)

a group we have already met as G, in the preceding section (on subgroups).

Any subgroup L of ¥, that contains automorphisms, a-automorphisms, d-
automorphisms, and dg-automorphisms, contains the same number of each sort. The
order of such a group is a multiple of four. In general, however, such groups are not
direct products of the subgroup of automorphisms L’ with D,; but always

L/L'~D, (50)
(i.e, L is an extension of L' with D,). Of course, also

2/S,~D,. (51)

In conclusion, a group isomorphic to D, does appear in quite an essential way

whenever one considers structure preserving transformations of algebras of relations.
This group, however, is not INRC but {I, T, N, TN}.
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CONCLUDING REMARKS

We have discussed in some detail some of the questions concerning transfor-
mations of propositional operations. It is, of course, impossible to be complete within
the limits of a paper, even in such a limited field. But whatever the coverage may be,
care of details is necessary and rewarding; the link with experiment is at this level
and at this price. Here we were specially interested in the gradual building-up of
groups of structure preserving transformations from involutions, and in the manner
by which transformations other than involutions come about through this process.
The paper should also illustrate the kind of reflection that could be important in
modeling the algebra of competence.

APPENDIX 1: CRYSTALLOGRAPHIC REPRESENTATION OF M,

In this appendix, we advance a representation of #, as a group of all spatial
transformations of a cube. Our purpose is not simply to present 2 curiosity, nor is it
only to provide a convenient way of visualizing logical transformations as spatial
ones. The isomorphism between .#; and the symmetries of a cube raises the question
of a possible correlation (possibly delayed) between the utilization of a group of
logical transformations and the mastery of an isomorphic group of spatial transfor-
mations. Therefore knowledge of such transformations seems appropriate.

The facts are the following. The group ., of mixed automorphisms of the free
Boolean algebra with n generators FB(n) is isomorphic to the symmetry group of a
(2" — 1)-dimensional crystal. In the case of FB(2), the Boolean algebra of the sixteen
BPO, the crystal is an ordinary, that is, 3-dimensional, crystal. The group A, is tl}en
the group of all spatial symmetries of a cube. (In crystallographic notation
My~ m3m, £y~ 43m.) _

Therefore, it is easy to represent the elements of .#; by spatial transformations. \Nfe
only need to place the elements of FB(2) suitably on the eight vertices and the six
centers of the faces of a cube, €.g., as shown in Fig. 3. This is the configuration .of 'the
face-centered cube, well known to crystallographers. Two of the 16 BPO are missing,

[ X

Pl

Oj

a l

FiG. 3. Cubic symmetry of binary propositional operations.
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viz. the tautology v and the antilogy o. These elements undergo only two transfor-
mations: either they remain unchanged (under automorphisms) or they are exchanged
(by d-automorphisms).

To each element of .# there corresponds now a symmetry operation of the cube,
as shown in Table 6. The elements of .#; are given by the products found in the
column “Generators” of Tables 2 and 3, the transformations of the cube by their
international crystallographic symbol to which subscripts have been added that
specify their orientation. The position of these symmetry elements with respect to the
cube, is shown in Fig. 4; the meaning of the symbols is explained in the following
remarks.

Let us first observe that the transformation N (already termed “inverse” by Piaget)
corresponds to inversion 1 through the centre O of the cube. All axes of Fig.4
contain O. Three of them, x, y, and z, pass through the centers of opposite faces.
About these axes there are rotations by 180° (such as, 2,), rotations by 90° (4,), or
by 270° (43). Furthermore, these transformations combined with the inversion 1 also

TABLE 6
Crystallographic Interpretation of .#; as m3m

o, 43m

I I N i

VP mg VP 2F
4 mp UN 25
TR n, TR 2,
T g Tf\l 2,
vg me ug 2
.4 mg VN 25
P 21 E m,
0 2, 0 m,
R 2x R m,
Y 3 TUN 8,
TU¥T 3 I TUVTN 3 s
ur 3; UTN 3
Uy 3, UVN 5,
TVUT 3 TVUTN 3

vy 3 VUN 3
i 3. TVN 3¢
G 3 VIN 3,
ke 4 RU a2
ey 4, PT 43
VR 4, ov 4"
or 4, TP, 4,
RV 3: VQ_ 4 ;,
PU 4, UR 4
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% D

Fic. 4. Symmetry elements of the cube.

occur. The combination 2,1 is shortened as m,; it represents reflexion through a
plane, a mirror, perpendicular to the x axis (and passing through O). The
combination 4,1 is written 4, and is termed a rotatory inversion.

Four axes, a, 8, 7, and &, pass through the vertices of the cube. Around these axes
there are rotations by 120° (3,) and by 240° (33) as well as the corresponding
rotatory inversions (35, 33 = 33).

Positive and negative rotations about these two families of axes are distinguished;
therefore they are fitted with one arrowhead. There are, however, six axes, 4, B, C, D,
E, and F, fitted with two arrowheads around which only rotations of 180° (2,) and
reflexions (m,) through planes perpendicular to them (and passing through O) occur.

Remember now that the standard symmetric BPO are (v, a, d, e, J, k, x, 0}. Except
for v and o, which are not represented in the figure, they are situated in the plane
corresponding to my, and, of course, they are left unchanged by reflexion in that
plane, that is by T'= mj,. The symmetric BPO with respect to the generators (p.q')
are located in the plane corresponding to 1, and are fixed by m, = TR. These planes
intersect in the x axis (the 4 axis and the B axis are perpendicular to the x axis). The
x axis O, is distinctive of the generator system {p,q) to which the generators .(P- q)
and (p, q') belong. The group G, preserving this sytem, detailed in Table 3, singles
out the x axis; it is the symmetry group of a square prism, with the square perpen-
dicular to the x axis (G, =~ 4,/mmm, Gi ~4,2,m). The other two generator systems
correspond to the other two directions parallel to the edges of the cube: {i; e} t0 0,
and {e, h} to O,.

Many other features discussed in the paper may
We cannot detail them all. Let us just mention the
an element 7 of .# on the BPO may easily be found from Fig. 3, but al§o the
conjugate by 7 of an element ¢ of .#;, that is gr~". It is obtained by performing on
Fig. 4 the geometric transformation corresponding to 7. For instance, 35’"-:3_5 = htg
and indeed performing a rotation of 120° around the axis J takes the C-axis t0 the
place of the E-axis. This is easier to do than to compute directly (TU)UP)UT).

be read off from the Figs. 3 and 4.
following. Not only the action of
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APPENDIX 2: MORE ABOUT THE “RESTRICTED GROUPS”

The group G/, the restricted group of automorphisms of the section on subgroups,
a group isomorphic to D,, has already been found by Polya (1937 and 1940). He
posed and solved a logical problem whose origin he traces to Jevons. The first step
towards the solution, the only one in which we are interested here, is to find the
“hypercubic” groups K, formed by the operations of permuting and/or
complementing the n variables of n-ary Boolean functions. The 2" possible values of
the argument of such a function can be placed on the vertices of a hypercube, that is
a cube in n dimensions. For n = 2 this is a square; for n = 3 it is the ordinary cube as
shown in Fig. 5. Note that this utilization of the cube is different from that in
Appendix 1.

The structure of K, has been determined by Polya as “wreath product” of the
group of two elements C, by the group S, of all permutations of n objects. This
wreath product is a semi-direct product of C, X --- X C, (n-times) by S,,

(o PR o 5. 99 (52)

where an element s of S, acts on C, X -+ X C, by permuting the n generators of the
n copies of C,. Therefore, Polya (1937) uses the pictorial expression “C,-wreath
around §,.”

The group K, has n!2" elements. For unary, binary, and ternary Boolean functions
we have the following isomorphisms

K,~C, (53)
K,~D,~ G| (54)
K,~8,%XC,. (55)

Thus K, the group of automorphisms of the ternary Boolean functions 22***%,
which is also the restricted group of automorphisms of FB(3), is isomorphic to the
group of all mixed automorphisms of the binary propositional operations FB(2)-
Therefore, we should be able to read the transformations of Tables 2 and 3 as giving
all- transformations of commuting and/or complementing the three standard
generators, say p, g, and r, of FB(3). (There are of course many other choices.) This
is indeed easily done. We restrict the transformations in question to the set
{i,f, h, g, e,j} and we identify these elements with p, ¢’, g, g’, r, and r’, respectively.
Note,- however, t'hat in our former interpretation as elements of FB(2), the elements e
fmd J were not independent of i, f; h, and g; now as generators of FB(3), they are
independent, of course. Placed at the centres of the faces of the cube (as in Fig. 5),
they form a 3-dimensional octahedron; in general we find an n-dimensional
octahedron.

Let us now examine how the restricted groups may be successively built up as we
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Fic. 5. The restricted group K, of automorphisms of FB(3).

add one generator at a time to a free Boolean algebra. For n=1 we have as single
generator of K, = C, the permutation (pp’) which we note P:

P=(pp"). (56)

(Inspection of Tables 2 and 3 shows that there are eight elements of _#, which
contain (pp’) = (if ). The reason for the choice of P will become clear, presently.) For
n=2 we add as second generator of

K,=(C,XC))X S,
the element
T=(pg)r'a’) (57)

the generator of S,; it permutes the two selected generators of FB(2). (In fact there
are two elements of .#; that contain these permutations.) We then find

TPT=0= (99') (58)
For
Ky=(C, X C; X C;) X S35
we have to add a generator that, together with T generates S, We can take

U= (pr)(p'r") (59)

Then

UPU=R=(rr'), (60)

and so on for higher values of n. Thus the number of generators of the group K,of

restricted automorphisms of FB(n) is n.
Incidentally, we have thus generate

automorphisms), #; ~ S, X C, by the three involutions

d (as mentioned in the section on dual

P, T,and U. However, thus
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generated, some apparently simple operations get complicated expressions. For
instance,

N = PTPUPUT. (61)

Such complicated generation should be avoided, unless it reflects genetical
complexities.

More recently, Leresche (1978) set out to determine “the complete group of binary
[propositional | operations.” By binary operations he understands the 10 (out of 16)
binary operations, that actually depend on two arguments, p and g¢. In our notation,
these are the 10 elements of the set {a, b, ¢, d, e, j, k, I, m, x} = L.

From the preceding it is not quite clear, however, what kind of transformations
should be selected out of the 10! candidates since the set L has no structure. Indeed,
it is not closed under meet and/or join. If then, to remedy, one adds the elements v
and o, the distributivity equations (9) and (10) do not hold in general, and
complementation is not unique. The set in question, even augmented, is not a Boolean
algebra and, a fortiori, not a Boolean subalgebra of FB(2).

The way out is to say that one is interested only in those transformations belonging
to #, that transform the elements of L among themselves. Consequently, these
transformations transform the remaining 6 elements of FB(2) among themselves.
Since the elements v and o always keep apart, this amounts to looking for those
transformations of .#; that permute the four elements i, &, g, and famong themselves.
But this is exactly the program that in the section on subgroups led to the group G,
of Table 5, whose subgroup of automorphisms Gj is the group K, already found by
Polya. However, the “complete group of transformations” found by Leresche, in his
otherwise correct paper, is only the Boolean subgroup G, of G,, whose elements are
given in (35). What is missing is the transformation T that exchanges the two
generators. Similarly, for ternary propositional operations, he finds a Boolean group
of order 16 instead of K, X C,~ S, X D, which is of order 96.

APPENDIX 3: BART'S GENERALIZATION MODEL

In an interesting paper, Bart (1971) has chosen another way to restrict the abun-

dance of the symmetric group S,,. He requires two things of the transformation
group:

(i) Every element of the group should be an involution. Such groups are
sometimes termed Boolean groups.

(ii) ' The group should be a regular permutation group. A group G of
permutations on a set S is transitive if for any x, y € S there exists an element @ € G,
such that ax=y, i.e.,, G has a single orbit on S. Such a group is regular, if no
clemr;:nt of it, except, of course, the unit element leaves any elements of S unchanged-
If S is finite then the number of elements of a regular group G (the order of G) equals
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the number of elements of S (the degree of G). A commutative and transitive group
of permutations is regular.

Taken separately, the two conditions are not very restrictive; there are many
subgroups of S, that fulfil them. But taken together, do they seriously limit the
possibilities? Bart’s procedure for obtaining his group seems rather natural. It may be
formulated as follows:

(i) From the elements FB(2), one forms a ring by defining addition by
X +y=xWy, (62)

and multiplication by xy=x A y. (This is Stone’s construction.)

(ii) With this addition, the elements of FB(n) constitute a Boolean group H,
with unit element the zero, 0 of FB(n). (This is why the group is termed Boolean.)
Further it has by construction the right number of elements, namely 2* (p=2").

(iii) A natural way to define the action ¢, of an element ¢ of H, on an element
x of FB(n) is to define

P(x) =S+ x. (63)
Due to the group properties of H,, the set
P, =g EEK,} (64)
is a regular Boolean group of transformations of FB(n), and
$Bn="0+n" (65)

The dual construction of a Boolean ring by

x+'y=xey, x-y=xVy (66)
gives rise to transformations ¢; defined by
gix)=x+"y. (67)
The group obtained this way is again @,, because
(68)

¢r= 9>

where & is the complement, in FB(n), of & _
Bart’s group @, is shown in Table 7. It will b; ;ctlc
the only elements of #; that are also elements of @, )
However, forn > 1, :D,, is not the only regular Boolean transformatlonz frouE (235 )lhl:
elements of FB(n) - @, is not a normal subgroup of S;, where g (=2, P;m s
the number of elements of FB(n); the elements of @, do not foni'n ac miII)}ion
conjugate class of S,. (For n=2, they belong to a class with roughly two

ed that [ =¢, and N= ¢, are
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TABLE 7

Bart’s Group of Transformations of BL(2)

T

¢

(vo)(ax)(bm)(c)(dk)(iN(he)(e))
(vx)ao)(bf Yeg)(de)(im)(hD)(jk)
(vm)(af )(bo)(e/)(dh)(ix)(el)(gk)
(vI)(ag)(bj)(co)(di)(hx)(em)(/k)
(vk)(ae)(bh)(ci)(do)(jx)(gm)(/T)
(uf Nam)(bx)(ed)(io)(hi)(eg)(kI)
(vg)(al)(bd)(ex)(if)(ho)(ef )(km)
(vi)(ad)(bl)(cm)(ig)(hf Y(eo)(kx)
(ve)(ak)(be)(dx)(ik)(jo)(&f )(im)
(vh)(ac)(bk)(dm)(ie)(if )(go)(ix)
(vi)(ab)(ck)(dl)(he)( jg)(fo)(mx)
(vd)(aj)(bg)(cf Nil)(hm)(ex)(ko)
(ve)(ah)(be)(df )(ik)(jm)(gx)(lo)
(vb)(ai)(ce)(dg)(hk)(j1)(fx)(mo)
(va)(bi)(ch)(d))(ek)(gl)(fin)(x0)
©)(@)(B) (X)) (R) ) NN WK (m)(x) (o).

e H I ~mNR=n @~ nooRe

elements.) All the (numerous) subgroups of S, conjugate to @, are regular Boolean
transformation groups of the elements of FB(n). (Furthermore, they arise from
commutative binary operations on the set of elements of FB(n), in the same way b,
arises from the operation w in (64).)

We have now shown how to obtain a great number of regular Boolean transfor-
mations on the set of n-ary propositional operations. It has, however, been argued in
the text, that if we model reversibility in cognitive activity by operations a having an
inverse a~' (as understood in group theory), the further requirement that a'=a
termed the “strong view of reversibility” (Bart, 1971, p. 542) is too strong. If
involutions play a role, then the experience of their possible noncommutativity
leading to higher order operations is necessary for later stages of cognitive activity.
As regards transitivity, Piaget was conscious of the fact that INRC is not transitive,
and was not at all bothered by it. Quite to the contrary, transitivity as well seems to
be too strong a condition. Indeed, according to the interpretation of orbits proposed
in this paper, transitivity would mean that a person would go through all the elements
of the combinatorial manifold, which for logical operations at the stage of formal
thought is taken by Piaget to be FB(n) without bothering too much about the value of
n.

Bart’s basic postulate is precisely “that an individual may be characterized by
FB(n), where n is the maximal number of factors for which he can generate all the
possible combinations. Thus, for an individual FB(n) would be an indicant of the
level of formal operational capacity and would state the maximal number of factors

for which the individual can generate all the possible combinations” (Bart, 1971, p.
540).
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It is then natural for him to require that the set [/7,] of 2" generators of the group
@, acting on FB(n) should “form an inclusion chain

m,cl,c-cll, "

(Bart, 1971, p. 545). Note, however, that at each step 2" generators are added. A
further feature, which Bart emphasizes in discussing an example from Inhelder and
Piaget (1958), is that “with the proposed formal thought model ... the formal
transformation that allows an individual to consider a proposition of the form g—r
after considering a proposition of the form p— r can be designed.”

We want to point out, that both these features are present already in Polya’s
groups K, (and a fortiori in .#,). Progressing from FB(n) to FB(n + 1) by adding one
new generator p,, , to the n old ones {p;:1 <i<n}, we have simply to add one
generator

Zui1 = (P1Pns VDI Prs ) P)(P3) - (p)(P7)

to the n old ones. Furthermore, one sees from (57) that K contains the transfor-
mation needed to transform p— r into g— 1, namely,

T(p-nr)=@-7)

We therefore think that the groups K, X C, are very convenient for the description
of formal operations.
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