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Let p be a real representation of a finite group G as n x n matrices and P(p)€ the ring of
polynomial invariants associated with p(G). One way to describe P(p)€ is as a direct sum
@ otiR[ fi,..., f,]. Given that such a good polynomial basis f,,...,f,, tg,..., ty is
known for P(p)“, we will show how to construct good polynomial bases for other
polynomial rings associated with P(p)C: P(p)! where H is a subgroup of G, P(p @ ¢)C
where ¢ is another real representation of G, and P(@™p)C. We will make sense of the
notion of good polynomial basis for relative invariants and show how to construct the
same for the representation @™ u;p, where y;p is the representation gotten from p by
twisting it by the linear representation p;, i=1,...,m.

If P(p) is the ring of all polynomials associated with p(G), then those features of the
" structure of P(p) as a graded G-algebra-—needed for the constructions above--will also be
developed by extending classical results about the ideal in P(p) generated by the invariants,
about G-harmonic polynomials and about polarization.

1. INTRODUCTION

In this paper the development of tools for computing invariants was
motivated by a desire to find the invariants associated with an arbitrary
real representation of any abstract three-dimensional crystallographic
point group. This class of 17 finite groups is particularly nice. The
irreducible representations are all low-dimensional and have image
groups that are either reflections groups or are closely related to
reflection groups, whose invariants are known and well behaved. We
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92 D. GAY AND E. ASCHER

want to capitalize on this nice situation to describe the invariants of all
the representations in question.

The techniques developed in this paper are valid for and may be used
with arbitrary finite groups. However, they were designed for representa-
tions whose irreducible constituents have the nice characteristics
mentioned above. They may not be computationally useful for other
classes of representations of groups (e.g. those with “messy invariants’
studied by Huffman and Sloane [7]).

In this paper, the notion of good polynomial basis will be the primary
means for describing the structure of the polynomial invariants
associated with a representation. We recall that this notion is defined as
follows.

Let G be a finite group of real n x n matrices. If p(X,,..., X,)is a
polynomial in the variables X,,..., X, with real coefficients and
g = (a;;) is an element of G, then we let Gacton P = R[ X, ..., X, ] by
gp(Xy,..., X)) =p(QY a;X;,...,Y a;X)). The ring P€ of invariants of
G consists of all polynomials p such that gp = p for all g in G. A
convenient way of describing P€ is as

e & B

where f,..., f, are algebraically independent homogeneous poly-
nomials,t, = land t,,...,t,are other homogeneous invariants. The set
of invariants fi, ..., f,,ty,...,t, form what is called a good polynomial
basis (GPB) with f, . .., f, the freeinvariantsand t,, . . . , t, the transient
invariants.

We will also be interested in the situation when G is an abstract group
and p is a representation of G as real n x n matrices. In this case, we will
denote the polynomial ring by P(p) and the ring of invariants by P(p)€.
We will use the notation P and P€ when G is assumed to be a matrix
group and no reference to a representation is necessary.

The notations P€ and P(p)€ follow this convention: M® = {me M:
gm = m for all g € G) whenever M is a G-module.

It has been shown in [6] that, for any matrix group G, a good
polynomial basis always exists for P¢. However, we will not need this
result. For us, the major concern is to find a good polynomial basis for an
arbitrary representation when bases for certain basic, related representa-
tions are known. The “basic” representations in some cases are the
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irreducible constituents; but, since we will also be interested in relative
invariants, we will consider a slightly more general notion than
irreducible constituent: twisted irreducible representations. (A
representation o is a twisted version of representation p if ¢ = up where
p 1s a linear representation and a(g) = u(g)p(g) for all g in G.)

In order to construct a good polynomial basis for reducible
representations, it is useful to know not only good polynomial bases for
the constituents but also the homogeneous G-module structure of the
constituent polynomial rings. Accordingly, the first sections of the paper
(Sections 2-5) are concerned with the structure of P as a graded G-
algebra.

Section 2 deals with the ideal generated by P$ (the invariants with
zero constant term) and its complement, following ideas of Chevalley
[3], Kostant [9] and Steinberg [16]. A new bound on the degrees of a
generating set of invariants is obtained and the location of new
invariants in P,, the homogeneous polynomials of degree m, is
determined. (The “new” invariants in P,, are those not in the algebra
generated by P¥,..., PS_,) In Section 3 we recall that the classical G-
harmonic polynomials, due to Fischer [4], are a good choice for a
complement to the ideal generated by PS. In Section 4 we look at how
these notions for P(p) and P(o) are related to those for P(p @ o). In
Section 5 we reintroduce classical polar operators and extend the well-
known results about them due to Capelli [2] and Weyl [17]. These
results will give us information about the structure of the polynomial
ring P(@™ p), the ideal of P(@™p) generated by P(@™p)S, a
complement of this ideal, and the new bound (first introduced in Section
2) on the degrees of the invariants.

In the second part of the paper (Sections 6 through 9) we face directly
the task of finding polynomial bases for certain representations, given
that bases for certain other representations are known. In Section 6 we
state and prove some general results about good polynomial bases. In
Section 7, when H is a subgroup of G, we show how a good polynomial
basis for P" can be obtained given that a good polynomial basis for P€is
in hand. We will also show how to construct a good polynomial basis for
P(p @ o) given bases for and additional structural information about
P(p)and P(o). This development follows closely the work of Kopsky [8].
Sloane [ 13], Solomon [ 14] and Stanley [15] on good polynomial bases.

In Section 8, we will prove some theorems about real relative
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invariants and make sense of the notion of good polynomial basis for
real relative invariants.

Finally, in Section 9 we will bring together all the tools developed up
to then and present an algorithm for constructing a good polynomial
basis for relative invariants in case the corresponding representation is a
sum @™ y;p of twisted representations.

We have restricted the coefficients for our representations to be
elements of the real field because this is where the applications are most
numerous and the results simplest. Many parts of the paper, such as
Sections 2,3 and 6, are directly valid for other fields. Other parts are valid
with minor modifications.

2. THE STRUCTURE OF THE POLYNOMIAL RING:
INVARIANT IDEAL AND ITS COMPLEMENT

Let I be the ideal in P generated by P, the invariant polynomials with
zero constant term. If I, = I n P,,, then it is not difficult to see that I =
@, I,and that I, = Y _; PP, _, (the latter is not necessarily a direct
sum). For all k, the subspace PEP,, _, isa G-submodule. Thus I, is also a
G-module and consequently by Maschke’s Theorem it has a G-
submodule complement Q,, in P,:

P,=1,®Qn.
Let Q = @,, Q,, and call Q a complement to I in P. The following gives
some properties of Q and indicates some relationships between it, P and
PC.
THEOREM 1

(1) The space Q is a finite dimensional vector space over R.

(2) There exists an integer m so that Q,, = {0}.

(3) We have P = QPS. In particular, for allm,P,, = Y i o PFQ,, -4 (not
necessarily a direct sum).

@) If Q,, = {0}, then Q,, ., = {0}.

(S)If pe PS, m> 1, then pe ({P§:j <m}) + Q,Q,,—, for any k =
1,...,m— 1.

6) If Q,, = {0} for some m > 0, then P$,..., PS generate PC.

(Note: If R is a ring and S < R, then {S) denotes the subring
generated by S.)
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Proof Proofs of parts (1) and (3) can be found elsewhere ([4], [14],
[16]). Part (2) follows easily from (1).

(4) Suppose Q,, = {0} and letpe P,,,,. Thenp = Y, p,q; with p, € P,
and g;e P,. Since Q, = {0}, p;el. Thus also pel. Consequently,
Qm+l = {0} :

(5) We break the proof of (5) into five steps, (i)—v).

(i) Ifpe P,, let t(p) = 1/|G| } 4ec gp Where |G| = order of G. Recall
that  is a G-module homomorphism projecting P,, onto PS. Thus, if
p € P§,then t(p) = p. Furthermore, if P,, = P¢ @ C is a G-module direct
sumand q € C, then 7(q) = 0. In particular, if Q is a complement to I and
q€ Q,, then 1(g) = 0. Finally,

if 1 <I<muePf veP,_, then t(uv) = ut(v). (%,)
Indeed,
1 1
T(uv) = — w) = — u)g(v)
)= ey 2,807 = iy 2, 80
LY ug) = u s Y go = wto)
- — ug(v) = u— = ut(p).
IGI geG g |G| gEGg

(i) Let k besuchthatm > k > 1. Then P,, = P,, _,P,. Thus, from part
(3) of this theorem,

PnI:PkPm-k: Z PIGQit—fP}:Qm—k—j'l'Qka—k' (%)
(,)#(0,0)
Ohlf:d.{)ﬁj&m—k

(iii) Let P =) 7%, P§ and Q, =Y %, Q, From (3) an element
q€Q,0, ((a, b) # (0,0)),by virtue of the fact that it is an element of P, . ,,
is of the form

q=p+F+4, pePS, FePSQ., §€0Q,., (%3)

(iv) For the remainder of the proof of (5), fix k such that m > k > 1.
Then from (jii) an element of the summand P£Q, -, P$Q,, ., ((I,j) #
(0,0) in formula (x,) is of the form p + r where p e PFP$PS_,_; and
re P$Q,. Thus, from (%), an element s of P,, is of the form

m=1
s=p+r+gq, PE<Z PtG>s re PSQ., G€ QuQp - (%4)
=1
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Combining (x3) and (x4), we get

s=p+r+q=p+r+p+r+4, (%5)

m=—1
pe<z PF> pePENQ0, . r+FfeP50Q,, 4eQ,.
1=1

(v) Assumenow that s e pS. To prove (3) we want to show that scan be
written as s = s, + s, where s; e} =)' Pf) and s, € 0,0, for k
(fixed) such that m > k > 1. From (x5) we have that s = (p + p) +
(r+7) + 4. Since se PS, we know that 1(s) =s. Using (i), we get
7(¢) = 0. Using formula (%,), we get =(r + ) = 0. Thus

s=(+p+0+H+4d=1((p+p)+(+7)+(4)
=1(p + p) + 1(r + F) + 1(g)
=t(p+p)+0+0
=p+p.

This completes the proof of (5).
(6) This follows immediately from (5). [ |

Denote by g the largest m such that Q,, # {0} and by ig the smallest m
such that P§,...,PS generate P®. Theorem 1 says i <gg + 1.
Noether’s theorem [11] says ig <|G|.

3. A NATURAL COMPLEMENT: G-HARMONIC
POLYNOMIALS

We may assume without loss of generality that G < O(n) and that the
X;'s form an orthonormal basis of P,. Define an inner product on P,, by
assuming that the polynomial basis of monomials is orthogonal and that
the inner product of X7'--- X7 (1 <i; <---< i, <n) with itself is
ny!---n.!. Assuming that P, is orthogonal to P, whenever m and k are
distinct, we get an inner product p-q on P.

ProrosiTiON 1 p-q is G-invariant.

Thus a natural complement to I, is (I,,)*, the orthogonal complement
to I, in P,. An alternative description of this complement is as follows:
Let pe P, with p=Ya;..;. X; - X,, «..; €R Define D, =
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Zail‘,.,._(a/ax,.l)--- (6/0X;). It is not difficult to see that p-g=
D,glx -, where X = (X,, X,).

If p is not homogeneous, define D, in the obvious manner. Then each
D, operates on P in the usual way. For all m > 0, let

H, ={qeP,: D,(g)=0forall pe P§}
and set H = @,, H,,. It is clear that
H={qeP:D,g)=0forall pe PS}.

We call H the G-harmonic polynomials.

ProrosiTion 2 (1) H,, = (I,,)*. Thus H is a complement to 1. (2) If B is
a generating set for P, then H, = {q € P,,: D (q) for all p € B}.

Propositions 1 and 2 are well known ([4], [5], [9] and [16]). For
completeness we prove them here.

Lemma 1 Let ge GL(n) and g™ 'X; =) ;a;X;. Then (a) if peP,
g(0p/0X,) = ), dy(Ogp/dX,) forall k and (b)if p,q € Pandg € O(n),then
gD,q = D, gq.

Proof (a) Let gX,=Ya;X;=2Z;, X=(X,,...,X,), and

Z=\(Z,,...,Z,). Then gp =gp(X,,..., X,)=p(Z,,...,Z,). By the
chain rule, we have
agp(X) ap(z 3z, p(Z) _ 6p Z}
an = Z (?Z Z J'I # {*)

It is easy to check, on monomlals, that [op(Z)/r'.’Z,-] = g[(“-p(X}fﬁX(-].
From this and () we have

F’P{X ) =S p(X)

Eox, ~ 4 ax,

(b) By (a), this is true for p = X, any i and any . Thus if p is the
monomial X; --- X, , then

il
gDy, xq—gé‘X_(Dx )

I
= 5ax; BPxon g
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0 ) )

- @)}: . %X, gq (by induction)
= Dgx, ) ex,)84

= szgq.

It is clear that this result extends to all polynomials by linearity. [

Proof of Proposition 1 gp-gq = D,,8q|x_, = 8D ,qlx., = constant
term of gD ,q = constant term of D,g = D gly_o = p-q. [ |

Proof of Proposition 2 Let J,= P, n (I,)". We want to show
H,=J, LetheH, and pel,. Then p =) s;it; where s;€ PS, t;€ P.
Since D;h =0 for all i, we must have D,h =), D,D;h =0. Con-
sequently, p-h = 0. Thus H,, = J,,..

To show the inclusion in the other direction, we first observe that
(st)p=t-D;,pforalls,t,pe P. Now let pe J,,. Then (st)-p = 0 for all

'sePg, teP,_, 0<k<m But st-p=1t-D,p=0. Since the latter
equality is true for all t € P,,_,, we have D;p = 0. Thus D,p = O for all
s€ P with 0 < k < m.Since D,p = Oforanyre P;,I > m, we have that
D,p=0forall re P§. Thus pe H,,

Since P,, = I,,®J,, as vector spaces, and since H,, = J,,, we have
P,=1,@®H, as vector spaces. Since the inner product on P,, is G-
invariant by Proposition 1 we have that P,, = I, @ H,, as G-modules.
Hence H = @®,, H,, is a complement. [

4. THE STRUCTURE OF THE POLYNOMIAL RING:
REDUCIBLE REPRESENTATIONS

For a fixed orthogonal representation p of G, denote by P(p), P(p)°,
I(p),H(p),qs(p)and i¢(p) the ring of polynomials, invariants, invariant
ideal, harmonics and bounds (respectively) associated with the matrix
group p(G).

Let p and o be two representations of G and p @ ¢ their direct sum.
We would like to describe the invariant and the harmonic polynomials
associated with the matrix group p @ ¢(G) given that the same are
known for p(G) and o(G).
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The following theorem, similar to Theorem 1, is a first step.

THEOREM 2

(1) Palp @) = @ Py(p)Py-4(0);
@ Halp ®3) € @ Hy(pMHy-4(0):

(3) forallm = 1,
P.(p ®0)° =(P;(p)% P;(©)% P;_1(p ®0): 1 <j<m)

+
k=

@) g¢(p) + q6l0) = q6(p @ o) = max{qe(p), q¢(0)};
(5) gc(p) + qglo) + 1 = ig(p ® o) = max{is(p),ig(o)}.

Hy(p)H,,—4(0);

1

Proof (1) follows from the fact that P(p @ o) = P(p)P(c) and that
P(p) = @ Pi(p), P(c) = @, P,(0).

(2) We know that P, (o) = I,(0) ® H, (o) and P,(p) = Ii(p) @ H,(p).
Let

L= @ Ho)H(p)

k+l=m

and

K = @ [Ik(o'ut(p}@Ik{ﬂ')Hf(P}@Hk(G}I:{P]]

k+l=m
k#001#0

@I,c)®I,(p).

Then, from (1) we have

P,lc®p)= M@ P (o)P(p)=K@®L.
We claim that L 1 K. Indeed, L is spanned by elements of the form pq
where p e H(g), g € H(p). Also, K is spanned by elements of the form st
where either se PS (o) or se PS(p) and t € P(p @ o), with suitable
restrictions on the degrees of s and ¢. Assume se PS(g). (The case
se P$(p) is similar). Then st-pg =t-Dy(pq) =t (D,p)q (since the
variables of s and g are disjoint) = 0 (since p is harmonic in P(c)). This
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proves the claim. Since H,,(c @ p) must also be orthogonal to K, it must
be that H, (6 @ p) < L. This completes the proof of (2).

The proof of (3) is entirely analogous to the proof of Theorem 1 part
(5). (4) and (5) follow easily from (1), (2) and (3) above. [ ]

5. POLARIZATION: THE STRUCTURE OF THE
POLYNOMIAL RING FOR ®"p

Among all reducible representation of G, we are particularly
interested in those of the form p @ p @ - - @ p. For such representations,
the very crude estimates for g and ig implied by Theorem 2 can be
improved considerably using a classical tool known as the polar
operator. We shall describe how to do this below and also extend the
classical results by showing how polar operators behave on harmonic
polynomials.

Let p: G — O(n) be a representation of G with corresponding poly-
nomial basis X, ..., X,. Forh e p(G)supposehX; =) ;a; X, Forl =

L....mlet X¥,..., X¥ be polynomial variables with hX® =
Yia; X% ie p(G)acts on X{,..., XY just as it acts on X,,..., X,.
Furthermore, assume that the X, i=1,...,n,[=1,...,m are alge-

braically independent, forming a polynomial basis associated with the
representation

@p=pD - Dp.
m-copies
Fori,j=1,...,m we define an operator D;; on P(@®" p) by

3

Dk = ; X oxp P

called polarization of p with respect to (X{,..., XP)at (X{,..., XV).
Some important properties of such an operator are given by the
following.

Prorosimion 3 If he p(G), then h(D;p) = D(hp). Thus a polar
operator is a G-module homomorphism. In other words,if U < P,(@™ p)
is a simple G-submodule, then either D;;(U) and U are isomorphic as G
modules or D;;(U) = {0}. In particular, if p is invariant so is D;;p.
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Proof Let gX{"=3%,a,X{" and g 'X{?=Y,ad,X". Then by
Lemma 1(a)

ogp
Z Ay

&Xm axP

Then

i dgp
gDiJ'p - Z (gX“)( axm) = E a!kXt A 3o un)

k.Lh
-y 98P y 08P
= Z (Z auﬂu)xfl X9 = E S X1 X0
= z Xf” f)’XU" Dijgp(X). [}

1

Forasubset S < P(@™ p), we denote by Pol(S) the vector space span
of those g€ P(@™ p) for which there exists pe S and integers 1 <

iyyeeyipy Jise-osji <m so that ¢ = D, - Dy, p. We say that an

element of Pol(S) is obtained from S by the po!ar process. The principal
facts about this (old and new) are contained in the following.

THEOREM 3 Let m = n = dim p. Then

(1) P(é p) . pol(P(é p))
(o} -]
3) fc(é p) - fc(é p),

@) f(c-"i) p) = Pol(:(é p)),

B H( : p) _ Pol(H(é-) p))
© qe(é p) - qc(é p).

Before proving the theorem, we first state and prove a lemma.



102 D. GAY AND E. ASCHER

LEMMA 2 (a) Let s < m. Assume the natural inclusion of P(@®° p) in
P(@®™p). Then H(@®*p) < H(@™ p).(b) Leti,j <mandpe H({@™ p).
Then D;pe H(@"™ p).

Proof (a) Let he H(@®*®p) and pe P5(@™p). Without loss of

generality we may assume pe P, (py)--- P, (p,) where py,...,p,
denote the m copies of p. We know P(@®° p) = P'(,ol -« P(p,). Thus, if
one of ng,y,...,n, is not zero, then D,h =0.If n,,y =---=n, =0,

then p e P$(@®° p) and D,h = 0.

(b) Letge P, (@™ p)°. Therefore p e H(@™ p) implies D,p = 0. We
want to show that D,(D;;p) = 0 also.

Write g = ) m, where m, is a monomial (with some real coefficient)
and, foreach k,m, = (X{?)"«d,, where h,, is a non-negative integer and d,
is a monomial not divisible by X{. Thus

]
"axp?

d
= v}
?@ D’"‘)X“ axp’

) 2 \™ (0] 0
=2 0ul\axp) XY axp?

d

=l g
s Wl fete ) s
kzll ki d“(aX}(‘n) 8X£llp

9] ¢ e 4
J
-i-ng"Xk (axi‘ﬂ) an;P

=Dp4p + D;(D,p).

Since g e P(®"™ p)$ and p e H(@™ p), we have that D,p = 0 and hence
that the second term, D;;(D, p), is 0. Also, since g € P(@™ p)$, we have
D;qe P(®" p)$ by Proposition 3. Again, by the definition of harmonic,
we have D, _,p = 0. This proves Lemma 2. [ |

Proof of Theorem Parts (1), (2)and (3) of the theorem are proved in
Weyl [17, p. 43f].
To prove (4) and (5), we first note that a polar operator D;; is a
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derivation, L.e.

D;j(pq) = (D;;p)q + p(D;;q). (%)

In particular, if p € P(@™ p)$ then by Proposition 3 D;;p € P(@®" p)$
and so also D;;(pq) € (@™ p) from equation (). Thus Pol(I(@" p))
I(@™ p). At the same time Lemma 2 implies Pol(H(@®" p)) < H(@®™ p).

To show both of these inclusions in the other direction, let
he H(@®™ p). Then by part (1) of this theorem and by what we have just
shown,h = q + h,where g € Pol(I(@" p)) and h € Pol(H(@®" p)). Hence
we must have ¢ =0 and consequently H(@™ p) = Pol(H(®" p)).
Similarly, I(@®™ p) = Pol(I(@" p)). This proves (4) and (5) from which
(6) follows immediately. |

Parts (1), (2) and (3) of the theorem reduce the problem of finding a
generating set for P(@™ p)© to that of finding one for P(@" p)¢ and
using the polar process. The bound ig(@™ p) is equal to ic(@" p).

Parts (4), (5) and (6) of the theorem are new and determine g¢(@™ p)
once gg(@" p)is known. Thusif o and p are two inequivalent irreducible
representations of G of degrees K and n respectively, then Theorems 2
and 3 say that

{()0(89)) <ad0) a0+

when | 2 k and m = n.

Theorem 3 part (5) together with Proposition 3 also says something
about the G-module structure of H,(@™ p) given that it is known for
H,(@®" p). For example, if M is a simple G-submodule of H,(@®" p) and
D is a product of polarizations, then D(M) is {0} or is a G-submodule of
H, (@™ p) isomorphic to M. Knowledge of the G-module structure of
H, (@™ p) is important for finding invariants. Indeed, from Theorem 2
part (3), the interesting invariants in P,((@®' o) @ (@™ p)) are found in
subspaces H,(@®' o)H,_; (@™ p)fori=1,...,1 — 1.(See also Theorem
8) Such invariants can be gotten from invariants in
H(@®"*o)H,_(@®"p) by a kind of “mixed” polarization described
in the paragraphs that follow below.

Let C and D be the harmonic polynomials for @'¢ and @™ p
respectively and let C" and D’ be the harmonics for @* ¢ and @" p
respectively. From Theorem 3, C = Pol(C’) and D = Pol(D"). In par-
ticular, simple summands for C (respectively D) can be chosen to be of the
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form d(A) (respectively @'(B)) where A (respectively B) is an irreducible
summand of C’ (respectively D) and d (respectively ¢') is an appropriate
product of polarizations. Thus a typical basis element for (CD)€ can be
chosen to be contained in a d(4) d'(B)°. We know (9(4) &'(B))€ # {0} iff
d(A) # {0} # ¢'(B) and d(A) and 0'(B) are isomorphic as G-modules.

By Proposition 3, we then know that (4B)€ # {0} and hence that 4
and B are isomorphic G-modules. Furthermore (4B)€ is spanned by a
single invariant p, in case A is absolutely irreducible, and by a linearly
independent pair of invariants p, ¢, in case A is real irreducible but not
absolutely irreducible. Since also 60’ = ', we have that (04 d'B)€ is
spanned by dd'(p), in the first case, and by the pair dd'(p), 3d'(q), in the
second.

We summarize all of this in the following proposition.

ProrosiTioN 4 Let u,v be two real representations of G. Let M =
(H(u)H(v))€. (1) Then M is spanned by all elements of sets of the form
(AB)€, where A is an irreducible subspace of H(u), B is an irreducible
subspace of H(v) and A and B are isomorphic G-modules. (2) Moreover, if
u= @™ pandv= @' o wherem >dimp = nand | > dim ¢ = k, then
M is spanned by polynomials of the form 00'(p) where p is in the spanning
set for (H(@®" p)H(@®* 6))® as described in (1), @ is a product of polar
operators from P(@"p) to P(@®™p) and & is a product of polar
operators from P(@*g) to P(®' o).

A classical improvement of Theorem 3 for a special case is the
following.

ProrosiTion 5 Let p: G— O(n) be a representation of G. Assuming
the notation of the paragraph preceding Theorem 3, we let o =
det(X$"); i j<n (o is then an element of P(@" p)) and let B be a generating
set for the invariants P(@®"~! p)°. If we P(@" p)®, then form = n — 1
P(@®™ p)€ is the linear span of the image of the set B L {a} under polar
operators of the form D;; ---D;; (1 <iy, ..., <m; 1 <jy, ...,
Je <)

This proposition is in Weyl [17, p. 44].

Since the a of Proposition 5 is an invariant iff p(G) = SO(n), the
theorem is a good improvement on Theorem 3 in case p(G) is a rotation
group. Using Proposition 5 we also have the following.

THEOREM 4 Assume the notation of Proposition 5. Suppose p(G) is a
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rotation group. Then H(@™ p) = PolH(@®" ' p)). In particular
46(D™) = qc(D" ! p).

Proof By Theorem 3, we have H,(@™ p) = Pol(H,(®" p)). By
Lemma 2, we have Pol(H,(@®" "' p)) = H,(@™ p). We will prove the
theorem by showing H,(@®" p) = Pol(H,(®" ' p)).

By the Capelli identities used by Weyl [17, p. 43] to prove Proposition

5, we have
P:(é p) c Pol(P:("(_%)l p)) + aP;-..(é p)-

(If I < n, then the right-most term is assumed to be zero.) Thus

H,(é p) < Po1(H,("é-)l p)) + Pol(h (@5 p)) + ap,_,.(é) p).

But, since ¢ € P,(@®" p)€ and Pol(I,(®" ! p)) < I,(@®™ p) by Theorem
3, we have Pol([,(@®"!p)) +aP,_,(B"p) < I,(®™p). Hence
H,(®" p) < Pol(H,(@®" ! p)). This proves Theorem 4. [}

6. GENERAL RESULTS ON GOOD POLYNOMIAL BASES

Let f;,..., f, be the free invariants of a good polynomial basis for P€.
Then transient invariants for the basis can be found as follows. Let J be
the ideal in P generated by the free invariants. Let J,, = P,, n J so that,
because the f;s are homogeneous, J = @, J,,. Certainly, J,, is a G-
submodule so that there exists a G-submodule C,, of P, with P, =
Jn®C,.Let C = @,, C, and call C a complement relativeto fi,..., f,.
(This construction is identical to the construction of the complement Q
to the ideal I = PSP in Section 2.) By analogy with Theorems 1 (parts
1-4) and 2 (part 3), we have the following.

THEOREM 5 Let F=R[f,,...,f,] and C°={peC:gp=p, all
g € G}. The spaces C and C€ have the following properties:

(1) dim C < 0.
(2) P = FC and, in particular,

Pm=@Fka—k’ “’here FkZPkﬁF.
k=0
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@) P5= k@o FiCo 4

(4) Any homogeneous basis for C€ together with the free invariants
Jis--os Ju form a good polynomial basis for PC. Conversely, the
transients in a good polynomial basis, with f,...,f, as free
invariants, form a basis for C¢ for some complement C.

Proof This theorem follows almost immediately from the following
restatement:

The homogeneous polynomials f;, ..., f, are the free invariants for a
good polynomial basis iff, when F = R[f},..., f,], there exists C =

¥-1 C; (a G-submodule of P with C; < P,) so that

P=FC=F®C

ie. P,, = @, F,C, -, Furthermore, C is a complement to F.

Proof of (=) is found in Solomon [14].

(<) Letn,,...,n be a homogeneous basis for C° and , = 1. Then
P¢ =Y%"!_,nF is a direct sum. This is the definition of a GPB with
Sis-- ., fu (free) and #4,. .., n, (transients). m

According to Theorem 5, if f;,..., f, are the free invariants and
ty,...,t, some of the transient invariants of a good polynomial basis,
then there are many possible choices for polynomials s, . . . , s, so that
Jis-oos fa(ree),ty, ..., ty,5,. .., s, (transient)is also a good polynomial
basis. The latter is called a completion of the former. If f;, . . ., f, are the
free invariants of a good polynomial basis and t,,... ,t, are the
transients of degree <m for some completion of f,, ..., f,, then we say
that fy,..., fo, ty,. .., tyis a partial completion of f,,. . ., f, up to degree
m. Here is a method for obtaining a completion of fi,..., f, (free)
through partial completions.

THEOREM 6 Let S be a set of polynomials spanning PS., and let
Sis-- s fastis- .., 1, be a partial completion of fy,. .., f, up to degree m.
Let d; = deg(t;) and Fy, = P, 0 R[f},. .., f,]. Select a maximal linearly
independent subset B of S whose span [B] has the property
[B] N @y sx=msr tiFy ={0}. Let B={s,,...,s,}. Then f,,...,f.,
tys- oy lys Sy,. .., Sy is a partial completion of f,,..., f, up to degree
m+ 1.
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Proof Let J be the ideal generated by f,,..., f,andletJ, =J n P,.
The invariant polynomials we seek will be a basis for CS ., for some
complement C relativeto f,,..., f,. Fori = 1,...,m,let C; besuch that
P,=C;®J;andt,,...,t, is a homogeneous basis for (C, ®---® C,,)°.
(C, ®---®C,is a“partial” complement relative to f,,..., f,.) If C,, 4+,
is such that P,,,; = J,,+1 ® Cns1, then fi,. .., f, algebraically inde-
pendent implies that P,,, ., = ) g F,C, 1, - isadirect sum. Thus also
vy = BF! F,C,, -, and hence

m+1
G G
Jme1 = @ chm-l-i-k: @ '[iFk- (%)
k=1 k=1
ditk=m+1

Since S spans P&, ,, there exists a linearly independent subset B of S
maximal with respect to [B] n JS ., = {0}, where [ B] is the linear span
of B. Thus there is a G-submodule C,,,, such that P,,,, =

Jm+1 ®Cpsy and CS, | has basis B. [

CoRrOLLARY If m > gg the method in Theorem 6 will work if the set S is
replaced by the set T = {t;t;: i,j=1,...,k, deg(t;t;) =m + 1}.

Proof We prove this by induction on m — qg. We assume the
corollary true up through degree m. By the theorem, we will be done if we
can show that PS | is spanned by JS,, U T. From formula () in the
proof of the theorem, we know that

Jaii= @ tF.

k=1
di+k=m+1
Furthermore, we know from Theorem 1 and m > g that P§,. .., Ps
generate P¢ and that P§@®--- @ P = @y +xcm tiFy. Thus PS,, is
spanned by JS ., U Dwhere D = {t; ---t;: 1 <i;<k,);d; =m +1}.
Now consider ¢; - - t; , one of the elements of D. Then deg(t;, - - - t; ) <
m + 1. Since we have a partial completion up to degree m, we know that
ti,- -+t = ), Cyt;p,, Where p, is a monomial in the fs and c;, € R. Thus,
since ¢;p, is in J when deg p, > 0, we can replace the spanning set D by
the set T={t;; 1<i, j<k, deg(t;t;) =m+1}. The corollary
follows. |

Because of Theorem 6 and its corollary, a set of transients in a partial
completion of f,..., f, up to degree m > g is called essential. The
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remaining transients in a full completion of f;, . . ., £, can thus be chosen
to be products of the essential transients.

7. GOOD POLYNOMIAL BASIS: SUBGROUPS AND
REDUCIBLE REPRESENTATIONS

Let G have a good polynomial basis f,,..., f, (free), P
(transients). Here is how to use this to find a good polynomibal basis for a
subgroup H of G.

THEOREM 7 Let C be a complement in P relative to Sis-o oy fuo A good
polynomial basis for P* then consists of f,,..., f, as the free invariants
together with a homogeneous vector space basis of C™ as the transient
invariants.

Proof This follows directly from Theorem 5 because P¢ < PH and
because the G-module C is automatically an H-module. [ ]

A well-known example is the following. Let G denote the group of
n x n permutation matrices and o,,..., 0, the elementary symmetric
functions in the variables X,,..., X,. Then for P = RLXy,..., X.],
P®=R[o,,...,0,). Thus g,,. .., 0, is a good polynomial basis. There
are no transients in this basis; they are all free.

Furthermore, if H is the subgroup of G corresponding to the even
permutations (H is isomorphic to the alternating group) and if § =
[licic<jen Xi— X;), then P"=R[o,,...,0,,6] and o,,...,0,,5
is a good polynomial basis for H with the g;’s free and § the single
transient.

Now assume p and ¢ are real representations of an abstract group G
with respective good polynomial bases f;,...,f, (free), t,,... , by
(transient) and g,,. .., g,, (free), u,, ...,y (transient).

THEOREM 8 Let C bea complement in P(p) relativeto f;, . . . ,foand Da
complement in P(g) relative to g,, . . ., g,,. Let C' (respectively D') be a G-
submodule of C (respectively D) suchthat C = C¢ @ C’ (respectively D =

D°@ D). Then a good polynomial basis for P(p @) consists of

Sis-oos fos 91s- .., G as free invariants and as transients all of the
following
@ty by Uyyenn,tiy;
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(c) a homogeneous vector space basis of (C'D')-called cross-term
transients.

Proof Let F(p)=R[f,..., f,] and F(6) =R[g,,...,gn]) Then
P(p) = F(p) ® C and P(c) = F(o) ® D. From this and Theorem 2,

P(p ® o) = P(p)P(o) =~ P(p) ® P(o) = (F(p) ® F(0)) ® (C ® D).

But also R[f,..., /s gis---.9m] = F(p)F(0) ~ F(p) ® F(o) and
CD ~ C ® D. The theorem follows. [ ]

Remark Finding a basis for (C'D')¢ can be accomplished using the
method of Proposition 4 part (1) with C’ replacing H (1) and D' replacing
H(v).

Finally, we turn to the description of a general method for finding a
good polynomial basis for P(@™ p)© using earlier parts of this paper.

We recall the notation of Section 5 where the variables for P(@™ p)
are denoted X, i=1,...,n;j=1,...,m and the action of ge G on
X is given by gX{) = 3, a,;X|”. We extend this notation as follows.
Suppose P(p)is the polynomial ring in the variables X |, . .., X, and that
the free invariants in a good polynomial basis for P(p)€ are fi,..., f,.
Then let ;P = £(XV,.... X" (i=1,...,n;j=1,...,m).

THEOREM 9 Let m=n—1 if G is a rotation group. Let m = n
otherwise. Let k > m. Then a good polynomial basis for P(@* p)® can be
chosen as follows.

(1) Choose the free invariants for P(@* p)© to be the fs.

(2) Assume the free invariants of a good polynomial basis for
P(@®™p)Carethe s (1 <i<n,1<j<m).Use Theorem 8 to
complete them up to degree s = qc(@™ p) + 1.

(3) Let U be the set of products tf such that (i) either t is a transient of
degree <s obtained in (2) (including t =ty = 1) or, in case G is a
rotation group and n < s,t = det(X?), ; ;,; (ii) f is a monomial in
the fPs, 1 <i<n,1<j<mwithdeg f <s—degt.

Then Pol(U) spans (3.5 P(@* p))®. Use S = Pol(U) in Theorem 6 to
complete { fV: 1 <i<n, 1<j<k} up to degree s.
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8. GOOD POLYNOMIAL BASIS FOR RELATIVE
INVARIANTS

In this section we will show that the span of the set of real relative
invariants in P is equal to the ring of invariants in P associated with a
certain subgroup of G. Thus a good polynomial basis for relative
invariants makes sense and finding one will be no more difficult than
finding a good polynomial basis for a subgroup (Theorem 7).

If p is a relative invariant, then there exists a one-dimensional real
representation A: G — { +1} so that, for all ge G, gp = A(g)p. In this
case we call p a relative invariant with weight A. The set P* = P denotes
the subspace of all relative invariants with weight A. If P = P, n P*,
then certainly P* = P;.

The set of all linear characters of G forms a group, under pointwise
multiplication, denoted by A. By definition, the set of all relative
invariants is the union of the P*as 1 ranges over A. We denote the span of
this set by P* so that P* = Y, ., P*. The set P" is an algebra that is nicely
characterized by the following theorem.

Tueorem 10 Let G={ge G: Ag) = +1 forall e A}. Then G is a
normal subgroup of G and P* = PS.

- Proof We will prove this theorem in three stages:
(1) The set G is a normal subgroup of G.
For every A€ A, ker . is a normal subgroup. Furthermore, the
intersection of normal subgroups is normal. This proves (1).
) G/G~Z, x---x Z,. (Z, denotes the integers modulo 2.)
Let G* be the subgroup of G generated by the squares of elements in
G, i.e. x € G* iff there exist g,,g,,....g,€ G with

x=gig} - &.
The subgroup G? is normal because, for he G,
hg?---gih™' = (hg;h ™) - - (hg,h ™).
Furthermore, G? < G because, for 1 € A,
Mgl g = Ay Mgl)’ = L.

Next, a € G/G? implies a’ = 1 € G/G2. For, if a = gG2, then a? =
gG’gG’ = ggg "' G’g)G’ = g?G*G? = G2 Thus G/G? ~
Z,%---x1Z,
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Finally, to show G = G?, we note that if G* = G then we are done. In
case G* # G, we let g e G with g ¢ G2 Thus, if ¢: G — G/G? is the
canonical epimorphism, then ¢(g) # | € G/G?. Hence, there exists
1e A(G/G?) with (u- ¢)(g) = — 1. But o ¢ € A = A(G) and therefore
g¢ G. Thus G = G? so that from what we had before, G = G? and
therefore G/C ~Z, x-+-x Z,. This proves (2).

@) P =

It is clear lhal P C P®. To show the inclusion in the other direction,
we first show that P is an invariant subspace of P,, under the action of
G.For,ifpe P¢,ge Gandh e G,wehaveg 'hg = h' e G(Gisanormal
subgroup) so that h(gp) = gh'p = gp. Thus gp e P

As a consequence ofthe fact that Pc is a G-submodule of P, we note
that the action of G on P corresponds to a representation of G each of
whose irreducible constituents n has the property that G < ker . One
may then regard n as an irreducible representation of G/G ~
Zé x-.+x Z, so that therefore n(g) = +1 for every ge G. Thus
P,, < P" and the proof of the theorem is complete. »

The notion of good polynomlal basis makes sense for P¢. However,
since not all elements of P are relative invariants (the sum of two
relative invariants is not necessanly a relative invariant), in order that a
good polynomial basis for PCbe useful, each of its elements must be in P,
for some m and A. A good polynomial basis for P¢ having this latter
property will be called a Good Polynomial Basis for Relative Invariants
(GPBRI for short).

One way to find a GPBRI once a good polynomial basis for P€ is
known is given by Theorem 6 (since G is a subgroup of G) with the
following modification: choose the homogeneous vector-space basis for
C® to be relative invariants for G.

Since G is a group and P* = P®, facts in Theorem 1 about the
invariant ideal and its complement (relative to G) can also be used to find
a GPBRI. In particular, if I(G) and I(G) denote the invariant ideals and
Q(G) and Q(G) denote complements relative to G and G respectively,
then we have P® o PS, Q(G) 2 Q(G), and I(G) 2 I(G).

Recall that g (respectively gg) is the smallest m such that Q,,(G) =
(respectively Q,,(G) = 0). Thus g = ge and the essential transients in a
GPBRI can be chosen to be of degree <ga + 1. This improvement on
the bound g; + 1 on the degrees of a generating set for invariants may
make it easier to seek relative invariants than to seek absolute invariants.
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Furthermore, G is always a rotation group so that the conclusions of
Proposition 5 would hold, making computations even simpler (cf.
Theorem 9).

Now let G be an abstract group, Ag be the group of all linear
characters of G and G = {geG: Ag) = +1forall Le Ag). If p,o are
two representations of G, the following theorem tells us how to find the
relative invariants of p @ o.

Tueorem 11 If ¢:G—H is an epimorphism of groups, then
¢(C)/=_\H. In particular, 6(G) = §(G), p(G) = 5(C) and (¢ @ p)(G) =
(6 ® p)(G). Thus a good polynomial basis for relative invariants foro @ p
can be found using Theorem 8 once they are known for ¢ and p.

Proof From the proof of (2) within the proof of Theorem 10, G = G2
and H = H2. That ¢(G?) = H? follows easily from the fact that ¢ is an
epimorphism. The theorem follows. [ ]

Remark  According to Theorem 11, to find a good polynomial basis
for G-relative invariants in P(p @ ¢), one mag use Theorem 8 to
compute a good polynomial basis for P(p @ ¢)®. However, a certain
amount of care must be exercised in using Theorem 8 in order to
guarantee that the cross-term transients (for C) are also relative
invariants for G. Here is a way to proceed. Assume the notation of
Theorem 8, that f;, ..., f,, t;,...,t, form a good polynomial basis for
P{p)c, and that these are also relative invariants for G. (Here, as in the
discussion below, we focus on P(p)and f,,..., fi,t,,..., t, but assume
that similar properties hold for P(¢)and g,,. .., g, u,, ..., u.) Let J be
the ideal generated by the f’s. We claim that J, is a G-module as well as a
G-module and that C can be chosen so that C,, = P, A Cisa G-module
as well. We show this by induction on m. It is certainly true for m = 1.
Assuming it is true up to m = k, we note that by formula () in the proof
of Theorem 6 J,, 1 = @) +x=m+1 CuFy. By the inductive hypothesis F,
and C, are G-modules. Thus so is J,, .. Therefore, there is also a G-
module C,,,, such that P, ., =J,.,, ®C,.,,.

Now, this construction can be made consistent with the fact that C®
has basis t,,...,t,—all relative invariants for G. Hence C® is a G-
submodule of C and therefore C® has a G-module complement C' in C.
We assume that this is the C’ of Theorem 8. We also assume that the D’
(for P(g)) of Theorem 8 is a G-module. Consequently, C'D’ is also a G-
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module so that (C'D’)® has a basis consisting of relative invariants for G.
These are the desired cross-term transients.

9. GOOD POLYNOMIAL BASES: TWISTED
REPRESENTATIONS

Let G be an abstract group, 4 a real linear character of G and
p: G — O(n) a representation. By 4p denote the representation defined
by (Ap)(g) = A(g)p(g) and call it the representation p twisted by A (or just a
twisted representation, if the context is clear).

The following theorem shows how to find a GPBRI for a representa-
tion provided a GPBRI is known for a representation closely related to it
by twisting.

THEOREM 12 Let p,..., p; be orthogonal representations of G and
P @@ p, their direct sum. Let p,, . .., w, be real linear characters of
G. If the variables of p;and u,p; (all i) are identified in the obvious way,
then a GPBRI for p, ®---@® p, is alsoa GPBRI for u,p, ®- - @ w py.-

Let X{,..., X" be the variables of P(p;) and Y{,. ; YRV the
variables ofP(p P )so thatgX® =%, al)X{"andgY{" = Zk i {g}a“’Y“"
The map y;: P(p;) = P(y;p;) defined by (X)) = Y (j=1,...,n)is
what is meant by “identifying variables in the obvious way“. Before
proving the theorem we state and prove

Lemma If p=p(XP) € P, (py) - P (p4) and q = p(Y), then q e
P (1 p1) -+ P (e pi) and gq = 1, (8)™ - - - 11, (8)™ (8P| x - y-

Proof of Lemma We first show the lemma in case k = 1. So we
suppress the superscripts on the variables. If pe P, (p) and p is a
monomial in the X;’s, then it is easy to see that,if g = p(Y;,. .., ¥,),then
89 = u(g)™(gp)lx-y. Extending by linearity, we see that forany p € P,,(p)

84 = 1(g)"(@p)lx-y-
Now suppose that p;e P, (p;) fori=1,... k. Let q; =

pi(Y?, ..., Y,?). Then, by the preceding paragraph,
g(q - q) =[] e

= [T 0@ (@po)lxo-yo].
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But the latter is equal to

(T @)™ (@(py - Pl x=y-

Extending this by linearity to all p in P, (p) - - Py (pi), we have the
lemma. |

Proof of Theorem Let p be a relative invariantin P, (p; @- - - @ py)-
Then p =Y. Pp,..m, Where py, ..m, € P (p1) - - - P, (pi) by Theorem 2.
Since the latter spaces are G-modules and their direct sum
P,.(p, ®---@ p,), it must be the case that each p,, .., is also a relative
invariant.

Thus, without loss of generality, we may assume that p € P,, (p;) -
P, (p,) for some my,...,m,. Since gp = A(g)p for some 1 € A. we have
by the lemma that, when q € P,, (4, p,) - - - Py, (i i) cOrresponds to p,

gq = 1 (@)™ - - - i (8)™ (8P x-v
= (@)™ - - - w(8)" (A@)P)lx-y
= @)™ - - ml()™AR)g-

Thus g is also a relative invariant. [ |

Another useful theorem in the same spirit as Theorem 12 is the
following.

THEOREM 13 For every i, let X be the polynomial variable corre-
sponding to the linear representation A;. Then

(1) XM ..., X"™ are the free elements of a GPBRI for P(A, ®- - -
@ A,,) (there are no transients in this basis);

() if fi,-..,f, are the free elements of a GPBRI for P(c), then
(XD, X™Y O {fy,..., fi} are free elements of a GPBRI for
P((@®™, 4,) @ 0); the transients in this GPBRI are the transients
from the GPBRI for P(c).

Finally, we combine Theorems 4, 9 and 12 in the following.

THEOREM 14 Let p: G — O(n) be a representation and p,, . .., y, real
linear characters of G. Thena GPBRI for P(@®f., p;p) can be chosen as
follows.

(a) Let fi,..., f, be the free invariants for a good polynomial basis of
P(p)C. Let C be a complement in P(p) relative to fy,..., fo. Let
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Ay,...»4 be all the real linear characters of G and C,; =
CnP(p), 1 <i<l ThenthereisC'cCsothat C=C, @---
®C,, ®C' (G-module direct sum). The elements in the union,
| J: (basis for C 1), form the transients of a good polynomial basis for
P(p)a. The free invariants of this basis are f,, ..., f,. This good
polynomial basis for P(p)® is also a GPBRI for P(p).

(b) Use Theorem 9 withm = n — 1 together with the Remark following
Theorem 11 to construct a GPBRI for P(@" " p) in the form of a
completion of the f"s (1 <i<n,1 <j<n—1)uptodegrees =
3c(®" ' p) + 1.

() For the basis X, ..., X, of p, suppose gX; =Y , a,;(g)X, for all
g € G. Then, for eachi = 1,.. .k, choose a basis Y{°,. .., Y for
the twisted representation y; p so that gY\" = ¥, p;(g)ay;(g) ;. Let
¢: P(Di-, p)— P(DY- | wip) be the unitary R-algebra homo-
morphism defined by @(X{) = Y®. Then ¢(GPBRI in (b)) =
GPBRI for P(®%-, wip).

In the case when G is a crystallographic point group, the representa-
tions of G can be decomposed into three or fewer representations of the
form @* y;p where p is an irreducible representation. Furthermore,
there are six necessary p’s, each of degree 3 or less. Thus Theorem 14 is
very useful in the study of such groups. This is exploited in [1].

References

[1] E. Ascher and D. Gay, Real, relative invariants of crystallographic point groups,
J. Phys. A: Math. Gen. 18 (1985), 397-415.

[2] A. Capelli, Ueber die Zuriickfithrung der Cayley’schen Operation Q auf gewéhnliche
Polar-Operationen, Math. Ann. 29 (1887), 331-338.

[3] C. Chevalley, Invariants of finite groups generated by reflections, Am. J. Math. 67
(1955), 778-782.

[4] E. Fischer, Uber algebraische Modulsysteme und lineare homogene partielle
Differentialgleichungen mit konstanten Koeffizienten, J. Reine Angew. Math. 140
(1911), 48-81.

[5] D. Gay, On representations of the Weyl group, Thesis, Dartmouth College, 1966.
[6] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the
generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.

[7] W. C. Huffman and N. J. A. Sloane, Most primitive groups have messy invariants,
Advances in Math. 32 (1979), 118-127. :

[8] V.Kopsky, Extended integrity bases of finite groups, J. Ph ys. A: Math. Gen. 12 (1979),
429-443.

[9] B. Kostant, Lie group representations on polynomial rings, Am. J. Math. 85 (1963),
327-404.



116 D. GAY AND E. ASCHER

[10] L. Michel, Invariants polynomiaux des groupes de symétrie moléculaire et cristallo-
graphique, in Group Theoretical Methods in Physics, Proceedings of the Fifth
International Colloquium, Academic Press, New York, 1977, pp. 75-91.

[11] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77
(1916), 75-91.

[12] G. C. Shepard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6
(1954), 274-304.

[13] N.J. A. Sloane, Error-correcting codes and invariant theory: New applications of a
nineteenth-century technique, Am. Math. Monthly 84 (1977), 82-107.

[14] L. Solomon, Partition identities and invariants of finite groups, J. of Combinatorial
Theory (A) 23 (1977), 148-175.

[15] R. P. Stanley, Invariants of finite groups and their applications to combinatorics,
Bull. Amer. Math. Soc. (New Series) 1 (1979), 467-511.

[16] R. Steinberg, Differential equations invariant under finite reflection groups, Trans.
Amer. Math. Soc. 122 (1964), 292-400.

[17] H. Weyl, The Classical Groups, Princeton University Press, 1946,



	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116

