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Some historical aspects of the discovery of the “axio-polar” (time-odd polar) vector, 
its appearance as an anapole moment in atomic nuclei and in the form of a 
spontaneous toroidal moment in “ferrotoroidic” crystals and domains are discussed. 
The related linear and bilinear “electrotoroidic” and “magnetotoroidic” effects, as well 
as the “piezotoroidic” and linear “toroido-optic effect” are postulated. 
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Il est évident que le qualitatif et le quantitatif ne constituent ni 
une hierarchie des valeurs dans la connaissance, ni un ordre 
chronologique dans le développement de cette dernière, mais 
bien deux de ses aspects complémentaires 
     Edgar Ascher 

 
1. INTRODUCTION 
 
Although Pierre Curie described already geometrically in 1894 the axial 
vector symmetry of a magnetic field correctly by designing a circle with 
a small tangential arrow perpendicularly to the field [1], it became only 
clear with Wigner’s introduction of the symmetry operation time 
reversal 1' in 1932 [2] that the axial vector magnetic field H (or 
magnetization) changes sign under application of 1' (1' H = - H) and 
that the polar vector electric field E (or polarization) remains 
unchanged by 1' (1' E = E), vice versa, the electric field (or 
polarization) changing sign under space inversion 1  ( 1 E = - E) and the 
magnetic field H (or magnetization) remaining unchanged by 1  ( 1 H = 
H). It took many more years that the existence of a special type of 
vector was disclosed, a kind of polar vector changing sign both under 
time reversal and space inversion. It was Ya. B. Zel’dovich in 1957 [3], 
who showed that a system which does not transform into itself under 
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space inversion, i.e. has no parity, generates a special distribution of 
magnetic fields like in a toroidal winding and differing from common 
electromagnetic multipoles like dipole and electromagnetic quadrupole 
[4]. For this special source of electromagnetic fields, more precisely for 
the spin part of the toroidal dipole [5], the term “anapole” was suggested 
by A.S. Kompanets [3]. The anapole remained for many years a 
theoretical curiosity in atomic and nuclear physics and it is remarkable 
that in 1997, after long experimental and theoretical efforts, for the first 
time an anapole moment has been discovered by optical spectroscopy 
using an interference technique, the anapole of the cesium 133Cs 
nucleus! [6,7].. This provided the first measurement of a nuclear spin 
dependence to atomic parity violation. The anapole violates parity and 
charge conjugation invariance. There are two sources of parity 
nonconservation in atoms, electron-nucleus weak interaction, predicted 
by Lee and Yang in 1956[7a] and the magnetic interaction of electrons 
with the nuclear anapole moment [8]. 
 Independently of this research line of theoretical and 
experimental nuclear physics, Edgar Ascher classified in 1966 [9] the  
current density j as an “axio-polar” vector, i.e. a  polar vector, which 
changes sign both under space and time reversal and determined the 31 
Shubnikov point groups of crystals, allowing this kind of vector, 13 of 
which were found to admit also a spontaneous magnetization vector. He 
also showed that velocity, linear momentum and some other physical 
quantities are transforming in the same way as j[9],[10]. In an attempt at 
explaining the symmetry of superconductors, Ascher conjectured that 
under certain conditions domains  of “spontaneous currents”, with very 
small crystalline anisotropy and an axio-polar point group, might form 
and arrange in closed loops of spontaneous current and explain the 
symmetry and some properties of superconductors. This hope was not 
fulfilled, but it was realized later [11] that the axio-polar vector 
“spontaneous toroidal moment" T, which also changes sign both under 
space and time reversal ( 1 T = - T,  1' T = - T ), must be allowed in the 
same 31 Shubnikov point groups as determined by Ascher. Simple 
geometrical representations of a toroidal moment are a solenoid formed 
into a torus, with an even number of windings [12], four spin-bearing 
ions in the (001)-plane of a tetragonal unit cell with a head-to-tail 
arrangement of the spins, or the four possible triangular ferromagnetic 
domains of Aizu species 4/mmm1'/Fm'm'm(s), even though a m'm'm 
single domain does not allow a spontaneous toroidal moment!It was 
pointed out [5] that A.V. Shubnikov in 1975 [13] was probably the first to 
pay attention to the symmetry of a circular magnetic field, representing 
it by an arrow with a conical tip, but he did not go farther. 
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Ascher classified the quantities occurring in Maxwell's equations, i.e. 
charge density ρ, polarization P, magnetization M and current density j 
with respect to the four irreducible representations of the dihedral group 
1 1' of order four (generated by space inversion 1  and time reversal 1' 

[9; Table 1 in:10]), corresponding to the identity, space inversion 1 , time 
reversal 1' and the product of both 1 ', respectively. In Table 1 a slightly 
modified version [14] of Ascher’s Table is shown, including the 
magnetic limiting point groups and where P, M, and T (replacing j) 
stand for the vectors polarization (polar), magnetization (axial), toroidal 
moment (t(ime)-odd polar = axio-polar), respectively, and G, 
transforming like the scalar ρ, for the type of axial vector, the best 
known physical example of which is the order parameter director n in 
the theory of phase transitions of liquid crystals. Other examples of 
vector G can be found in reference [14]. All four types of vector can be 
taken as order parameter of phase transitions. 
 
TABLE 1   Four types of vector and magnetic limiting point groups corresponding to 
the characters of the four irreducible representations of the dihedral group 11',  
generated by the space inversion 1  and the time reversal 1' [according to 9,10,14] 

E   1     1'    1 ' Vector 
basis 

Magnetic limiting 
point group 

1   1   1   1 G      ∞/m1' 
1 - 1   1 - 1 P      ∞mm1' 
1   1 - 1 - 1  M      ∞/mm'm' 
1 - 1 - 1   1 T      ∞/m'mm 

 
By intersecting the ensembles of 31 point groups permitting a 
spontaneous polarization SP, with those 31 groups allowing a 
spontaneous magnetization SM (both were first determined by Shuvalov 
and Belov in 1962 [15]), 13 ones were found to allow both SP and SM. 
By intersecting the respective ensembles of the “magic trinity” of the 31 
groups of SP , SM and that of the 31 “axio-polar” groups, Ascher 
showed that 9 groups are overlapping and permit all three types of 
vector[10]. Several ferroelectric/ferromagnetic/ferrotoroidic/ferroelastic 
boracites have such types of magnetic point group (1, m, m', m'm2')[16]. 
 
2. FERROTOROIDICS 
 
Keitsîro Aizu [17] coined the collective term “Ferroic” for ferroelectrics, 
ferromagnetics and ferroelastics, having in common “Ferro”, “-ics” and 
domains, which can be switched and are giving rise to hysteresis loops. 
Really akin are only ferroelectrics and ferromagnetics (with the vectors 
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SP and SM, resp.) which can be characterized by a single Shubnikov 
point group, whereas ferroelastics with the symmetric 2nd rank tensor 
spontaneous deformation sε have to be characterized by a pair of point 
groups , named “species” [17]. Based on the different terms of the 
density of stored free enthalpy [Table I of ref. 18], the “ferroic” nomenclature 
has been enlarged [19,20,21] with a subdivision into “Primary”, 
“Secondary” and “Tertiary” ferroics (see Table 2). Keeping in line with 
the ferroic nomenclature, it is now tempting to extend the primary 
ferroics with the introduction of the notion “ferrotoroidics”, bearing a 
spontaneous toroidal moment sT. This has been done by using sT as an 
order parameter [22-25] with the nomenclature “Ferrotoroic”[26]. (N.B.: 
since the ending “oic” is reserved to the collective term “ferroic” only, 
we propose “ferrotoroidic” instead). 
If one would now like to extend the domain switching driving force of 
ferroelectrics and ferromagnetics (Table 2) to an analogous 
ferrotoroidic one, the situation is the following: 
A toroidal moment can be due both to orbital ordering and spin 
ordering. Here we are only interested in the spin part of the toroidal 
moment ST which has been defined[26,27,28] by the sum over the spins of 
all spin-bearing particles in the unit cell, with the cell’s center as origin: 
 

ST = ½ μB ∑
a

r ×S , a a 

where Sa stands for the spin moment and ra for the radius vector of the 
magnetic cation-ion “a” in the unit cell. Such a moment 

ST has been 
calculated using non-magnetic and magnetic structural data for the 
ferrimagnet Ga2-xFexO3 [27,28]. It has been shown [26] that the toroidal 
moment density T can play the role of an order parameter with curl H 
or electric current j (including displacement current (1/c) ∂D/∂t) serving 
as the thermodynamically conjugated field for the parameter T, in the 
same way as the electric field E and the magnetic field H play that rôle 
for the spontaneous polarization and magnetization, respectively. Thus 
there is a contribution to the density of free enthalpy describing the 
interaction between the toroidal moment and the magnetic field [26]: 
 
   δFT = - T × curl B 
 
i.e. the “driving force” for reversing a toroidal moment will be 
proportional to that term. It means that we would have to apply a 
circular magnetic field in the plane perpendicular to the toroidal 
moment. It has been shown theoretically [29] that aggregates of 
microscopic particles bearing a magnetic moment (e.g. fixed in a plastic 
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matrix), tend to arrange themselves in the absence of a magnetic field in 
the minimum energy state which has a toroid geometry. The reversal of 
their toroid vector is possible by a circular magnetic field (with 
“vortex” G = curl H), or better a vortex field plus a static magnetic bias 
field along the toroid vector direction, allowing to decrease the vortex 
coercive force Gc. Information storage by this kind of technique has 
been proposed [29]. 
However, reversing the spontaneous toroid dipole of a ferrotoroidic 
crystal by means of such a circular field does not appear possible, 
because this would require the action of coherent circular fields of the 
size of the unit cell. Fortunately there exists another more interesting 
contribution to the free enthalpy, ~Ti (E×H)i, in which the physical 
meaning of the order parameter “toroidal moment T” has been 
identified (up to a constant λ) as the antisymmetric component of the 
magnetoelectric tensor [30]. In the general case the three components of 
the vector T are proportional to the three components of the 
antisymmetric part of the magnetoelectric tensor, while the source for 
the vector T is the vector S with components Si ~(E×H)i, in the same 
way as electric and magnetic field are source vectors for polarization 
and magnetization, respectively. This latter vector transforms like the 
spontaneous toroidal moment ST and necessitates off-diagonal 
components of the magnetoelectric tensor. It is consistent that the 31 
Shubnikov point groups permitting a spontaneous toroidal moment, do 
have off-diagonal coefficients, a few of them in addition diagonal 
ones[37, Fig.2]. Then it should also be permitted to add the driving force 
~ΔSTi Si to the list of primary ferroics (Table 2), but this would be 
strictly adequate in case of the presence of an antisymmetric part of the 
magnetoelectric tensor only. Then one might speak of a pure 
"ferrotoroidic domain", but it would be an antiferromagnetic, 
necessarily magnetoelectric one and the term would not have a deeper 
signification than when O'Dell [31] called the antiferromagnetic domains 
of Cr2O3 "magnetoelectric domains". The switching and "poling" of 
such "ferrotoroidic" domains can be done by magnetoelectric poling 
and annealing as described for the first time for Cr2O3 [32,33], but with 
crossed electric and magnetic fields at right angle to ST. 
More frequently, however, symmetric and antisymmetric components 
of the "secondary ferroic" magnetoelectric coefficient αij (Table 2) will 
occur in materials permitting ST and will have to be separated for 
extracting the antisymmetric part. This has been done for the first time 
for the polar ferrimagnetic Ga2-xFexO3 (point group m2'm') [27,28] and a 
high magnetic field-induced spin-flop phase of Cr2O3 [34] with 
monoclinic point group 2'/m [35].  
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The orthorhombic point group m'm2' of the boracites Ni3BB7O13Br, 
Co3B7B O13Br and Co3BB7O13I  allows a spontaneous toroidal moment T 
and has the magnetoelectric coefficients α

S

23 and α32  . Whereas the 
temperature dependence of  α23 reflects that of the sublattice 
magnetization, α32 shows an unusual sharp diverging peak at Tc. By 
taking 

ST as the order parameter, phenomenological theory showed that  
α23  is proportional to 

ST, whereas  α32  is given  by the sum of  a term  
∝ 1/ T  and a second one ∝ T. The term inversely proportional to T 
explains the diverging peak  and identifies it herewith as the signature 
of a spontaneous toroidal moment . 

 S S S

[25]

 
3. ELECTROTOROIDIC, MAGNETOTOROIDIC AND  
PIEZOTOROIDIC EFFECTS 
 
With a view to describing moving crystals, Ascher also determined the 
58 Shubnikov point groups for the kineto-electric effect and the 58 
groups for the kinetomagnetic effect, both being ruled by a second rank 
tensor of the same type as that of the magnetoelectric effect [10]. In 
Table 2 of ref. [10] these groups are arranged on places with 
corresponding tensor form. The "ferrokinetic", "kineto-electric" and 
"kinetomagnetic" terms of the density of free enthalpy g were defined 
respectively as [10]

 
-g (E,B,v) = … + opi vi + ηik vi Ek + ξik vi c Bk  , 

 
where op = linear momentum without electric (E) and magnetic (B) 
fields, v = the "field" velocity and c = light velocity. Since op and v 
transform like the vectors T and S , we can anticipate on mere 
symmetry grounds under the heading "secondary ferroics" the existence 
of analogous "ferrotoroidic", "electrotoroidic" and "magnetotoroidic" 
terms ~Ti Si, ~Si Ek and ~Si Hk, respectively. From the explicit forms 
~(E×H)i Ek and ~(E×H)i Hk we can identify these effects simply as 
special cases of the bilinear  magnetoelectric effects  with the  
terms γijk Hi Ej Ek and αijk Ei Hj Hk [36, 37], respectively, in the same way 
as sTi Si was identified as a special case of the linear magnetoelectric 
effect. In the converse sense the ~Si Ek and ~Si Hk terms should also 
allow to produce electric and magnetic field-induced toroidal moments, 
respectively. 
Since S transforms like the current density, the set of secondary ferroic 
effects may also be enlarged by a "piezotoroidic" effect term ~Si σjk , 
where σik is the stress tensor, in full analogy with the "piezoconductive" 
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TABLE 2   Ferroic “driving forces” of domain switching and reorientation due to 
differences in domain states (adapted from references 18,19,20,21) 
Type of Ferroic                       "Driving force"         States differ in: 

                   Δg ∝ 
Primary Ferroics    
Ferromagnetic ΔSMi Hi spontaneous magnetization sMi

Ferroelectric ΔSPi Ei spontaneous polarization sPi

Ferrotoroidics ΔSTi  Si spontan. toroidal moment sTi

Ferroelastic ΔSεij σij spontaneous deformation sεij
Secondary ferroics§)    
Ferrobimagnetic Δχij Hi Hj magnetic susceptibility χij
Ferrobielectric Δκij Ei Ej electric susceptibility  κij
Ferrobielastic Δsijkl σij σkl elastic compliance sijkl

Ferroelastoelectric Δdijk Ei  σjk piezoelectric    coefficient dijk

Ferromagnetoelastic Δqijk Hi σjk piezomagnetic coefficient qijk

Ferromagnetoelectric***) Δαij Ei Hj magnetoelectric*) coeff.. αij
Tertiary ferroics    
Ferrotrielectricity Δκijk Ei Ej Ek nonlinear electric suscept. κijk
Ferrotrimagnetism Δχijk Hi Hj Hk nonlinear magnetic suscept. χijk
Ferroelastobielectricity Δγiljk σjk Ei El electrostriction coefficient γiljk
Ferroelastobimagnetism Δλiljk σjk Hi Hl magnetostrictioncoefficient λiljk
Ferromagnetobielectricity Δγijk Hi Ej Ek magnetobielectric**)coeff. γijk
Ferroelectrobimagnetism Δβijk Ei Hj Hk electrobimagnetic**)coeff. βijk
Ferromagnetoelectroelasticity Δπijkl Hi Ej σkl piezomagnetoelectric coeff. πijkl
Ferromagnetobielasticity Δψiklmn Hi σkl σmn magnetobielastic coeff. ψiklmn
*) linear magnetoelectric effect,**) = bilinear magnetoelectric effects, ***) N.B.: in the 
nomenclature of Newnham the term “Ferromagnetoelectric”, used in this table, is somewhat 
unhappy because it is also sometimes used in literature for a ferroelectric being simultaneously 
ferro(i)magnetic in the same phase.- If the toroidic domains would have been discovered before 
the ferromagnetic ones, we might probably have on equal right a long  list of  Primary, Secondary 
and Tertiary  "Toroido-"s  of "Toroics" today!! 
§) Since the electrotoroidic and magnetotoroidic terms can be expressed by the magnetobielectric 
and electrobimagnetic ones, resp., due to Si =  (E×H)i , they have not been specially mentioned in 
the list of  Secondary ferroics. 
 
effect, for which Ascher has determined the 66 Shubnikov point groups 
and their tensor form [9] (in transposed matrix form also in ref. [38], 
Fig.1, columns u ). Since Si σjk = ~(E×H)i σjk , the piezotoroidic effect 
can be identified as a special case, with condition (E×H), of the 
"tertiary ferroic" piezomagnetoelectric effect [40] with term πijkl Hi Ej σkl 
in the free enthalpy (TABLE 2). The latter effect has so far not yet been 
measured [41]. The piezotoroidic effect should allow to induce a toroidal 
moment by stress or a deformation by crossed electric and magnetic 
fields. Since we can replace the stress tensor σjk of the piezotoroidic 
term by the magnetic and electric susceptibility terms Hj Hk and Ej Ek, 
resp., without changing the tensor form, we obtain the tertiary ferroic 
bilinear terms Si Ej Ek and Si Hj Hk, respectively, allowed in the 66 
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TABLE 3   Tensor form and type of transposed matrix form (Fig.1 of ref. [38]) 
of some secondary and tertiary ferroic terms of stored free enthalpy 
____________________________________________________________ 
Piezoelectric tensor form (t-type. matrix)  :    Ei σjk  ,    Ei Ej Ek  ,       Ei Hj Hk 

Piezomagnetic tensor form (s-type matrix):  Hi σjk  ,    Hi Ej Ek  ,       Hi Hj Hk 

Piezotoroidic tensor form (u-type matrix)  :  Si σjk  ,    Si Ej Ek  ,        Si Hj Hk 

____________________________________________________________________________________________ 
 
piezotoroidic (piezoconductive ) point groups (Table 3). Due to Si 
~(E×H)i, the terms are also ruled by the piezomagnetoelectric tensor 
form. The Si Ej Ek term should for example give rise to the linear 
toroido-optic effect (linear birefringence induced by ~(E×H) ), in 
analogy with the linear magneto-optic effect term Hi Ej Ek [42] and the 
linear electro-optic (Pockels-) effect term Ei Ej Ek [18] of the stored free 
enthalpy. 
 
4. CONCLUSIONS 
 
In the general case the toroidal part of the magnetic spin structure of 
antiferromagnetic or (weakly) ferro(i)magnetic ferrotoroidics will be 
rigidly interwoven and coupled, so that “toroidic domains” will be 
identical with the ferro(i)magnetic or antiferromagnetic ones, in a 
similar way as fully ferroelectric/fully ferroelastic domains are identical 
and do not contain sub-domains[39]. The magnetic field-induced 
switching of ferromagnetic/ferrotoroidic domains will therefore reverse 
the sign both of the spontaneous toroidal moment and that of 
spontaneous magnetization. For reversing the sign of the toroidal 
moment of antiferromagnetic structures, the magnetoelectric driving 
force ∝Δαij Ei Hj can be used. The possibilities of “reorientation” (= 
switching of spin directions by angles other than 90°) of spontaneous 
toroidal moments will require ferroelasticity in the ferroic phase and 
obey the same rules as established earlier[39] for ferromagnetics, 
antiferromagnetics, ferroelectrics and ferroelastics. 
Since the linear magnetoelectric effect allows to determine the magnetic 
point group of spin-ordered crystals, it has proved to be a precious 
complementary tool for magnetic structure determination by neutron 
diffraction. In the same way, the determination of the toroidal moment 
via the antisymmetric part of the magnetoelectric tensor and the cross-
check by its calculation from magnetic and non-magnetic structural data 
will bring additional help for finalizing magnetic structures accurately. 
The postulated secondary ferroic electrotoroidic, magnetotoroidic and 
piezotoroidic effects, as well as the tertiary ferroic bilinear electro- and 
magnetotoroidic effects may be difficult to disclose, but since Nature 
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usually uses all degrees of freedom which symmetry offers her, they 
may sooner or later become measured. 
Thus several physical meanings of the axio-polar (t-odd polar) vector 
are now well established (anapole moment, current density, velocity, 
linear momentum, toroidal moment, etc). Nonetheless, this fact is still 
widely ignored in text-books. For example the current density j usually 
continues to be described as an ordinary polar vector. Although this is 
wrong, it may lead to correct results in para- and diamagnets, which are 
left invariant under time reversal. However, this holds no longer true in 
spin ordered phases, where the axio-polar character of j has to be 
respected for describing physical effects correctly, for example linear 
magneto-resistance [38],[43].  
Summarizing, we can say that the recently evidenced anapole moment 
of 133Cs and the spontaneous toroidal moment of the single crystals of 
Ga2-xFexO3 and Cr2O3 open fascinating new horizons in nuclear and 
particle physics on the one hand and in solid state physics and 
crystallography on the other hand. 
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